A071537 Least integer m >= n such that there exist integers k_n, k_n+1, ..., k_m with nonzero k_n, for which n^(k_n) * (n+1)^(k_n+1) * ... * m^(k_m) = 1.
1, 4, 6, 8, 10, 9, 14, 12, 15, 16, 22, 18, 26, 21, 20, 24, 34, 25, 38, 27, 28, 33, 46, 30, 32, 39, 35, 36, 58, 40, 62, 42, 44, 51, 45, 48, 74, 57, 52, 49, 82, 50, 86, 55, 54, 69, 94, 56, 60, 63, 68, 65, 106, 64, 66, 70, 76, 87, 118, 72, 122, 93, 75, 77, 78, 80, 134, 85, 92, 84, 142, 81, 146, 111, 88, 95, 90, 91, 158, 96, 98
Offset: 1
Examples
a(18) = 25: we have 18^4 * 19^0 * 20^10 * 21^0 * 22^0 * 23^0 * 24^-8 * 25^-5 = 1.
Programs
-
Mathematica
a[n_] := Module[{m, d, f, M, M2}, If[n == 1, Return[1]]; m = n; While[True, m++; If[PrimeQ[m], Continue[]]; d = PrimePi[m]; M = Array[0 &, {d, m - n + 1}]; For[k = 0, k <= m - n, k++, f = FactorInteger[n + k]; For[j = 1, j <= Length[f], j++, M[[PrimePi[f[[j, 1]]], k + 1]] = f[[j, 2]] ]]; M2 = Table[M[[i, j + 1]], {i, 1, d}, {j, 1, m - n}]; If[MatrixRank[M] == MatrixRank[M2], Return[m]]]]; Array[a, 81] (* Jean-François Alcover, Jun 12 2017, translated from PARI *)
-
PARI
{ a(n) = local(m,d,f,M,M2); if(n==1,return(1)); m=n; while(1, m++; if(isprime(m),next); d=primepi(m); M=matrix(d,m-n+1); for(k=0,m-n, f=factor(n+k); for(j=1,matsize(f)[1], M[primepi(f[j,1]),k+1]=f[j,2] )); M2=matrix(d,m-n,i,j,M[i,j+1]); if(matrank(M)==matrank(M2),return(m)); ) } \\ Max Alekseyev, Oct 22 2008
Extensions
Corrected definition, comments and extra terms from Max Alekseyev, Oct 22 2008
Comments