A381217 a(n) is the least positive k such that the sum of the reverses of the first k primes is divisible by n.
1, 1, 10, 5, 2, 16, 5, 20, 20, 3, 9, 16, 7, 5, 10, 30, 4, 20, 68, 44, 16, 20, 9, 20, 19, 7, 26, 5, 47, 34, 19, 30, 20, 28, 99, 20, 29, 68, 54, 44, 86, 16, 41, 20, 74, 26, 40, 30, 16, 50, 28, 82, 97, 26, 101, 51, 68, 47, 6, 44, 38, 53, 42, 30, 7, 20, 38, 28, 10, 99, 110, 20, 72, 121, 103, 137, 189
Offset: 1
Examples
a(3) = 10 because A071602(10) = 2 + 3 + 5 + 7 + 11 + 31 + 71 + 91 + 32 + 92 = 345 is divisible by 3, and no earlier term of A071602 is divisible by 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A071602.
Programs
-
Maple
N:= 100: # for a(1) .. a(N) rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: V:= Vector(N): Cands:= {$1..N}: p:= 0: s:= 0: for i from 1 while Cands <> {} do p:= nextprime(p); s:= s + rev(p); S:= select(t -> s mod t = 0, Cands); if S <> {} then V[convert(S,list)]:= i; Cands:= Cands minus S fi od: convert(V,list);
-
Mathematica
s={};Do[ k=1;sm=0;Until[Divisible[sm,n],sm=sm+IntegerReverse[Prime[k]];k++];AppendTo[s,k-1],{n,77}];s (* James C. McMahon, Feb 19 2025 *)
-
PARI
sumkrp(k) = my(v=primes(k)); sum(i=1, k, fromdigits(Vecrev(digits(v[i])))); \\ A071602 a(n) = my(k=1); while(sumkrp(k) % n, k++); k; \\ Michel Marcus, Feb 17 2025
Comments