A071621 Primes that can be written as "a * b + c * d", where a, b, c and d are also primes.
13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1
Keywords
Examples
13 = 2*2 + 3*3, so 13 belongs to the sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
size = 15; Select[ Union[ Flatten[ Table[ ppp = Prime[i]Prime[j] + Prime[k]Prime[l]; If[ PrimeQ[ppp], Print[{Prime[i], Prime[j], Prime[k], Prime[l], ppp}]]; ppp, {i, size}, {j, size}, {k, size}, {l, size} ]]], PrimeQ] Take[Select[Union[Total[Times@@@TakeDrop[#,2]]&/@Tuples[Prime[Range[15]],4]],PrimeQ],60] (* Harvey P. Dale, Dec 04 2024 *)
-
PARI
list(lim)=my(v=vectorsmall(lim\1),u=List(),t); forprime(p=3,lim\2-2, forprime(q=2,min(p,(lim-4)\p), t=p*q; forprime(r=2,(lim-t)\2, v[t+2*r]=1))); forprime(i=1,lim,if(v[i],listput(u,i))); v=0; Set(u) \\ Charles R Greathouse IV, Nov 05 2015
-
PARI
a(n)=if(n>1,prime(n+6),13) \\ Charles R Greathouse IV, Nov 05 2015
Extensions
Edited by Robert G. Wilson v, Jun 25 2002
Comments