cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071621 Primes that can be written as "a * b + c * d", where a, b, c and d are also primes.

Original entry on oeis.org

13, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1

Views

Author

Arnoud Buzing (arnoudb(AT)wolfram.com), Jun 21 2002

Keywords

Comments

As size in the Mathematica coding is increased, the primes not previously covered will probably be forthcoming. Conjecture: Only the primes 2, 3, 5, 7, 11 and 17 are not representable by this form.

Examples

			13 = 2*2 + 3*3, so 13 belongs to the sequence.
		

Programs

  • Mathematica
    size = 15; Select[ Union[ Flatten[ Table[ ppp = Prime[i]Prime[j] + Prime[k]Prime[l]; If[ PrimeQ[ppp], Print[{Prime[i], Prime[j], Prime[k], Prime[l], ppp}]]; ppp, {i, size}, {j, size}, {k, size}, {l, size} ]]], PrimeQ]
    Take[Select[Union[Total[Times@@@TakeDrop[#,2]]&/@Tuples[Prime[Range[15]],4]],PrimeQ],60] (* Harvey P. Dale, Dec 04 2024 *)
  • PARI
    list(lim)=my(v=vectorsmall(lim\1),u=List(),t); forprime(p=3,lim\2-2, forprime(q=2,min(p,(lim-4)\p), t=p*q; forprime(r=2,(lim-t)\2, v[t+2*r]=1))); forprime(i=1,lim,if(v[i],listput(u,i))); v=0; Set(u) \\ Charles R Greathouse IV, Nov 05 2015
    
  • PARI
    a(n)=if(n>1,prime(n+6),13) \\ Charles R Greathouse IV, Nov 05 2015

Extensions

Edited by Robert G. Wilson v, Jun 25 2002