A089877 Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A071667/A071668.
1, 1, 0, 0, 0, 5, 0, 0, 0, 5, 0, 10, 0, 5, 0, 10, 0, 45, 0, 10, 0
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
map(CatalanRankGlobal,map(DonagheysA057506,CatalanSequences(196))); # Where CatalanSequences(n) gives the terms A014486(0..n). DonagheysA057506 := n -> pars2binexp(deepreverse(DonagheysA057505(deepreverse(binexp2pars(n))))); DonagheysA057505 := h -> `if`((0 = nops(h)), h, [op(DonagheysA057505(car(h))), DonagheysA057505(cdr(h))]); # The following corresponds to automorphism A057164: deepreverse := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else [op(deepreverse(cdr(a))), deepreverse(a[1])]; fi; end; # The rest of required Maple-functions: see the given OEIS Wiki page.
(define (A057506 n) (CatalanRankSexp (*A057506 (CatalanUnrankSexp n)))) (define (*A057506 bt) (let loop ((lt bt) (nt (list))) (cond ((not (pair? lt)) nt) (else (loop (cdr lt) (cons nt (*A057506 (car lt)))))))) ;; Functions CatalanRankSexp and CatalanUnrankSexp can be found at OEIS Wiki page.
Comments