A071673 Sequence a(n) obtained by setting a(0) = 0; then reading the table T(x,y)=a(x)+a(y)+1 in antidiagonal fashion.
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 3, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 5, 6, 5, 6, 5, 4, 4, 5, 6, 6, 6, 6, 5, 4, 5, 5, 6, 6, 7, 6, 6, 5, 5, 5, 6, 6, 6, 7, 7, 6, 6, 6, 5, 4, 6, 7, 6, 7, 7, 7, 6, 7, 6, 4, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 5, 5, 5, 6, 6, 7, 8, 7, 7, 7, 8, 7, 6, 6, 5, 6, 6, 7, 6, 8, 8, 7, 7, 8, 8, 6, 7, 6, 6
Offset: 0
Examples
The first 15 rows of this irregular triangular table: 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 3, 4, 4, 5, 4, 4, 4, 5, 5, 5, 5, 4, 4, 5, 6, 5, 6, 5, 4, 4, 5, 6, 6, 6, 6, 5, 4, 5, 5, 6, 6, 7, 6, 6, 5, 5, 5, 6, 6, 6, 7, 7, 6, 6, 6, 5, 4, 6, 7, 6, 7, 7, 7, 6, 7, 6, 4, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 5, 5, 5, 6, 6, 7, 8, 7, 7, 7, 8, 7, 6, 6, 5, 6, 6, 7, 6, 8, 8, 7, 7, 8, 8, 6, 7, 6, 6 etc. E.g., we have a(1) = T(0,0) = a(0) + a(0) + 1 = 1, a(2) = T(1,0) = a(1) + a(0) + 1 = 2, a(3) = T(0,1) = a(0) + a(1) + 1 = 2, a(4) = T(2,0) = a(2) + a(0) + 1 = 3, etc.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10440 (rows 0..144 of the triangle, flattened)
- N. J. A. Sloane, Transforms (Maple code for RASTxx transform)
Crossrefs
Programs
-
PARI
up_to = 105; A002260(n) = (n-binomial((sqrtint(8*n)+1)\2, 2)); \\ From A002260 A004736(n) = (1-n+(n=sqrtint(8*n)\/2)*(n+1)\2); \\ From A004736 A071673list(up_to) = { my(v=vector(1+up_to)); v[1] = 0; for(n=1,up_to,v[1+n] = 1 + v[A004736(n)] + v[A002260(n)]); (v); }; v071673 = A071673list(up_to); A071673(n) = v071673[1+n]; \\ Antti Karttunen, Aug 17 2021
-
Scheme
(define (A071673 n) (cond ((zero? n) n) (else (+ 1 (A071673 (A025581 (-1+ n))) (A071673 (A002262 (-1+ n)))))))
Extensions
Self-referential definition added Jun 03 2002
Term a(0) = 0 prepended and the Example-section amended by Antti Karttunen, Aug 17 2021
Comments