cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071708 Numerator of Sum_{k=1..n} phi(k)/k.

Original entry on oeis.org

1, 3, 13, 8, 52, 19, 163, 361, 1223, 1307, 16477, 5749, 83977, 88267, 280817, 147916, 2754812, 2839897, 58552633, 60492571, 63263911, 65468386, 1612469468, 549883871, 579629587, 596790577, 1864736021, 1912541636, 58587007624, 59449633388, 1939984033478
Offset: 1

Views

Author

N. J. A. Sloane, Jun 28 2002

Keywords

Examples

			1, 3/2, 13/6, 8/3, 52/15, 19/5, 163/35, 361/70, 1223/210, ...
		

References

  • József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Section I.24, page 27.
  • Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Berlin, 1963.

Crossrefs

Cf. A072155 (denominators), A000010, A059956.

Programs

  • GAP
    List([1..35], n-> NumeratorRat( Sum([1..n], k-> Phi(k)/k) ) ); # G. C. Greubel, Aug 25 2019
  • Magma
    [Numerator( &+[EulerPhi(k)/k: k in [1..n]] ): n in [1..35]]; // G. C. Greubel, Aug 25 2019
    
  • Maple
    with(numtheory); seq(numer(add(phi(k)/k, k = 1..n)), n = 1..35); # G. C. Greubel, Aug 25 2019
  • Mathematica
    Table[Sum[EulerPhi[k]/k, {k, n}], {n,35}]//Numerator (* G. C. Greubel, Aug 25 2019 *)
  • PARI
    a(n) = numerator(sum(k=1,n, eulerphi(k)/k));
    vector(35, n, a(n)) \\ G. C. Greubel, Aug 25 2019
    
  • Sage
    [numerator( sum(euler_phi(k)/k for k in (1..n)) ) for n in (1..35)] # G. C. Greubel, Aug 25 2019
    

Formula

Also numerator of Sum_{i=1..n} (mu(i)/i)*floor(n/i). - Ridouane Oudra, Nov 26 2019
a(n)/A072155(n) ~ (6/Pi^2) * n + O(log(n)^(2/3)*log(log(n))^(4/3)). - Amiram Eldar, Sep 18 2022