cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071717 Expansion of (1 + x^2*C)*C^2, where C = (1 - sqrt(1-4*x))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 2, 6, 17, 51, 160, 519, 1727, 5863, 20228, 70720, 250002, 892126, 3209328, 11626385, 42378075, 155307615, 571925820, 2115257100, 7853744910, 29263124250, 109384710240, 410075910270, 1541481197334, 5808790935126
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series( ((1-x-3*x^2) -(1+x-x^2)*sqrt(1-4*x))/(2*x^2) , x, n+1), x, n), n = 0..30); # G. C. Greubel, May 30 2020
  • Mathematica
    With[{$MaxExtraPrecision = 1000}, CoefficientList[Series[(1 + x^2*#)*#^2 &[(1 - (1 - 4 x)^(1/2))/(2 x)], {x, 0, 24}], x]] (* Michael De Vlieger, May 30 2020 *)
  • Sage
    def A071717_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( ((1-x-3*x^2) -(1+x-x^2)*sqrt(1-4*x))/(2*x^2) ).list()
    A071717_list(30) # G. C. Greubel, May 30 2020

Formula

Conjecture: (n+2)*a(n) +(-3*n-2)*a(n-1) +(-5*n+8)*a(n-2) +2*(2*n-7)*a(n-3)=0. - R. J. Mathar, Aug 25 2013
G.f.: ( (1 -x -3*x^2) - (1 +x -x^2)*sqrt(1-4*x) )/(2*x^2). - G. C. Greubel, May 30 2020