A071838 a(n) = Pi(8,3)(n) + Pi(8,5)(n) - Pi(8,1)(n) - Pi(8,7)(n) where Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x.
0, 0, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Wikipedia, Chebyshev's bias
Crossrefs
Programs
-
Mathematica
Accumulate@ Array[-If[PrimeQ@ #, KroneckerSymbol[2, #], 0] &, 105] (* Michael De Vlieger, Nov 25 2018 *)
-
PARI
for(n=1,200,print1(sum(i=1,n,if((i*isprime(i)-3)%8,0,1)+if((i*isprime(i)-5)%8,0,1)-if((i*isprime(i)-1)%8,0,1)-if((i*isprime(i)-7)%8,0,1)),", ")) \\ Program fixed by Jianing Song, Nov 08 2019
-
PARI
a(n) = -sum(i=1, n, isprime(i)*kronecker(2, i)) \\ Jianing Song, Nov 24 2018
Formula
a(n) = -Sum_{primes p<=n} Kronecker(2,p) = -Sum_{primes p<=n} A091337(p). - Jianing Song, Nov 20 2018
Extensions
Edited by Peter Munn, Nov 19 2023
Comments