cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071838 a(n) = Pi(8,3)(n) + Pi(8,5)(n) - Pi(8,1)(n) - Pi(8,7)(n) where Pi(a,b)(x) denotes the number of primes in the arithmetic progression a*k + b less than or equal to x.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 5, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2
Offset: 1

Views

Author

Benoit Cloitre, Jun 08 2002

Keywords

Comments

a(n) is the number of odd primes <= n that have 2 as a quadratic nonresidue minus the number of primes <= n that have 2 as a quadratic residue. See the comments about "Chebyshev's bias" in A321861. - Jianing Song, Nov 24 2018
Although the initial terms are nonnegative, infinitely many terms should be negative. For which n does a(n) = -1?
The first negative term occurs at a(11100143) = -1. - Jianing Song, Nov 08 2019

Crossrefs

Cf. A091337.
Let d be a fundamental discriminant.
Sequences of the form "a(n) = -Sum_{primes p<=n} Kronecker(d,p)" with |d| <= 12: A321860 (d=-11), A320857 (d=-8), A321859 (d=-7), A066520 (d=-4), A321856 (d=-3), A321857 (d=5), this sequence (d=8), A321858 (d=12).
Sequences of the form "a(n) = -Sum_{i=1..n} Kronecker(d,prime(i))" with |d| <= 12: A321865 (d=-11), A320858 (d=-8), A321864 (d=-7), A038698 (d=-4), A112632 (d=-3), A321862 (d=5), A321861 (d=8), A321863 (d=12).

Programs

  • Mathematica
    Accumulate@ Array[-If[PrimeQ@ #, KroneckerSymbol[2, #], 0] &, 105] (* Michael De Vlieger, Nov 25 2018 *)
  • PARI
    for(n=1,200,print1(sum(i=1,n,if((i*isprime(i)-3)%8,0,1)+if((i*isprime(i)-5)%8,0,1)-if((i*isprime(i)-1)%8,0,1)-if((i*isprime(i)-7)%8,0,1)),", ")) \\ Program fixed by Jianing Song, Nov 08 2019
    
  • PARI
    a(n) = -sum(i=1, n, isprime(i)*kronecker(2, i)) \\ Jianing Song, Nov 24 2018

Formula

a(n) = -Sum_{primes p<=n} Kronecker(2,p) = -Sum_{primes p<=n} A091337(p). - Jianing Song, Nov 20 2018

Extensions

Edited by Peter Munn, Nov 19 2023