A071313 a(n) is the smallest number that cannot be obtained from the numbers {1,3,...,2*n-1} using each number at most once and the operators +, -, *, /, where intermediate subexpressions must be integers.
2, 5, 11, 41, 92, 733, 4337, 28972, 195098, 1797746
Offset: 1
Examples
a(2)=5 because using {1,3} and the four operations we can obtain 1=1, 3-1=2, 3=3, 3+1=4 but we cannot obtain 5 in the same way.
Links
- Gilles Bannay, Countdown Problem
- Index entries for similar sequences
Programs
-
Python
def a(n): R = dict() # index of each reachable subset is [card(s)-1][s] for i in range(n): R[i] = dict() for i in range(1, n+1): R[0][(2*i-1,)] = {2*i-1} reach = set(range(1, 2*n, 2)) for j in range(1, n): for i in range((j+1)//2): for s1 in R[i]: for s2 in R[j-1-i]: if set(s1) & set(s2) == set(): s12 = tuple(sorted(set(s1) | set(s2))) if s12 not in R[len(s12)-1]: R[len(s12)-1][s12] = set() for a in R[i][s1]: for b in R[j-1-i][s2]: allowed = [a+b, a*b, a-b, b-a] if a!=0 and b%a==0: allowed.append(b//a) if b!=0 and a%b==0: allowed.append(a//b) R[len(s12)-1][s12].update(allowed) reach.update(allowed) k = 1 while k in reach: k += 1 return k print([a(n) for n in range(1, 9)]) # Michael S. Branicky, Jul 01 2022
Extensions
a(10) from Michael S. Branicky, Jul 01 2022
Comments