A071864 Nonprime n such that the number of elements in the continued fraction for Sum_{d|n} 1/d equals tau(n), the number of divisors of n.
1, 4, 9, 14, 15, 21, 25, 49, 51, 55, 57, 63, 95, 98, 99, 115, 116, 121, 147, 161, 169, 172, 175, 188, 195, 203, 236, 244, 245, 247, 265, 284, 287, 289, 297, 299, 322, 328, 329, 351, 356, 361, 363, 370, 371, 374, 387, 406, 412, 413, 418, 423, 425, 437, 465, 488
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
aQ[n_] := ! PrimeQ[n] && Length@ContinuedFraction[DivisorSigma[1, n]/n] == DivisorSigma[0, n]; Select[Range[488], aQ] (* Amiram Eldar, Aug 30 2019 *)
-
PARI
for(n=1,1000,if(length(contfrac(sumdiv(n,d,1/d)))==numdiv(n)*(1-isprime(n)),print1(n,",")))
Comments