cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071903 Number of x less than or equal to n and divisible only by primes congruent to 3 mod 4 (i.e., in A004614).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 19, 19, 20, 20, 20, 20, 20, 20, 21, 21, 22
Offset: 0

Views

Author

Benoit Cloitre, Jun 12 2002

Keywords

References

  • Landau, "Handbuch der Lehre von der Verteilung der Primzahlen", vol. 2, Teubner, Leipzig; third edition: Chelsea, New York (1974), pp. 641-669.

Crossrefs

Programs

  • Mathematica
    With[{s = {1}~Join~Select[Range@ 80, AllTrue[FactorInteger[#][[All, 1]], Mod[#, 4] == 3 &] &]}, Table[LengthWhile[s, # <= n &], {n, Max@ s}]] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    for(n=1,100,print1(sum(i=1,n,if(sumdiv(i,d,isprime(d)*(d-3)%4),0,1)),","))

Formula

a(n) = Card{ k | A004614(k) <= n }.
Asymptotically: a(n) ~ sqrt(2)*A*n/(Pi*sqrt(log(n))) where A = Product_{k>0} ((1-A002145(k)^(-2))^(-1/2)).