A071907 Kolakoski-(1,4) sequence: a(n) is length of n-th run.
1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 1, 4, 1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 1, 4, 1, 4, 4, 4, 4, 1, 4, 4, 4, 4, 1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 1, 4, 1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 4, 4, 4, 1, 1, 1, 1, 4, 1, 4, 1, 4, 4, 4, 4, 1, 4, 4, 4, 4, 1, 4, 4, 4, 4
Offset: 1
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- Michael Baake and Bernd Sing, Kolakoski-(3,1) is a (deformed) model set, arXiv:math/0206098 [math.MG], 2002-2003.
- Rémy Sigrist, Scatterplot of twice the number of ones among the first n terms of the sequence minus n for n = 1..1000000
Programs
-
Mathematica
seed = {1, 4}; w = {}; i = 1; Do[w = Join[w,Array[seed[[Mod[i - 1, Length[seed]] + 1]] &, If[i > Length[w], seed, w][[i]]]]; i++, {n, 42}]; w (* Ivan Neretin, Apr 02 2015 *)
Comments