A071920 Square array giving number of unimodal functions [n]->[m] for n>=0, m>=0, with a(0,m)=0 for all m>=0, read by antidiagonals.
0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 9, 7, 1, 0, 0, 5, 16, 22, 11, 1, 0, 0, 6, 25, 50, 46, 16, 1, 0, 0, 7, 36, 95, 130, 86, 22, 1, 0, 0, 8, 49, 161, 295, 296, 148, 29, 1, 0, 0, 9, 64, 252, 581, 791, 610, 239, 37, 1, 0
Offset: 0
Examples
Square array a(n,m) begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 0, 1, 2, 3, 4, 5, 6, 7, 8, ... 0, 1, 4, 9, 16, 25, 36, 49, 64, ... 0, 1, 7, 22, 50, 95, 161, 252, 372, ... 0, 1, 11, 46, 130, 295, 581, 1036, 1716, ... 0, 1, 16, 86, 296, 791, 1792, 3612, 6672, ... 0, 1, 22, 148, 610, 1897, 4900, 11088, 22716, ... 0, 1, 29, 239, 1163, 4166, 12174, 30738, 69498, ... 0, 1, 37, 367, 2083, 8518, 27966, 78354, 194634, ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
a:= (n, m)-> `if`(n=0, 0, add(binomial(n+2*j-1, 2*j), j=0..m-1)): seq(seq(a(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Sep 21 2013
-
Mathematica
a[n_, m_] := Sum[Binomial[n+2*k-1, 2*k], {k, 0, m-1}]; a[0, ] = 0; Table[a[n-m, m], {n, 0, 10}, {m, n, 0, -1}] // Flatten (* _Jean-François Alcover, Feb 25 2015 *)
Formula
a(n,m) = Sum_{k=0..m-1} binomial(n+2k-1, 2k) if n>0.
Comments