A071921 Square array giving number of unimodal functions [n]->[m] for n>=0, m>=0, with a(0,m)=1 by definition, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 7, 1, 0, 1, 5, 16, 22, 11, 1, 0, 1, 6, 25, 50, 46, 16, 1, 0, 1, 7, 36, 95, 130, 86, 22, 1, 0, 1, 8, 49, 161, 295, 296, 148, 29, 1, 0, 1, 9, 64, 252, 581, 791, 610, 239, 37, 1, 0
Offset: 0
Examples
Square array a(n,m) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, 7, 8, ... 0, 1, 4, 9, 16, 25, 36, 49, 64, ... 0, 1, 7, 22, 50, 95, 161, 252, 372, ... 0, 1, 11, 46, 130, 295, 581, 1036, 1716, ... 0, 1, 16, 86, 296, 791, 1792, 3612, 6672, ... 0, 1, 22, 148, 610, 1897, 4900, 11088, 22716, ... 0, 1, 29, 239, 1163, 4166, 12174, 30738, 69498, ... 0, 1, 37, 367, 2083, 8518, 27966, 78354, 194634, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Kenneth Edwards and Michael A. Allen, New Combinatorial Interpretations of the Fibonacci Numbers Squared, Golden Rectangle Numbers, and Jacobsthal Numbers Using Two Types of Tile, arXiv:2009.04649 [math.CO], 2020.
Programs
-
Maple
a:= (n, m)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..m-1)): seq(seq(a(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 22 2013
-
Mathematica
a[0, 0] = 1; a[n_, m_] := Sum[Binomial[2k+n-1, 2k], {k, 0, m-1}]; Table[a[n - m, m], {n, 0, 12}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 11 2015 *)
Formula
a(n,m) = 1 if n=0, m>=0, a(n,m) = Sum_{k=0..m-1} C(2k+n-1,2k) otherwise.
Comments