cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071921 Square array giving number of unimodal functions [n]->[m] for n>=0, m>=0, with a(0,m)=1 by definition, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 7, 1, 0, 1, 5, 16, 22, 11, 1, 0, 1, 6, 25, 50, 46, 16, 1, 0, 1, 7, 36, 95, 130, 86, 22, 1, 0, 1, 8, 49, 161, 295, 296, 148, 29, 1, 0, 1, 9, 64, 252, 581, 791, 610, 239, 37, 1, 0
Offset: 0

Views

Author

Michele Dondi (bik.mido(AT)tiscalinet.it), Jun 14 2002

Keywords

Comments

If one uses a definition of unimodality that involves universal quantifiers on the domain of a function then a(0,m)=1 a priori.

Examples

			Square array a(n,m) begins:
  1, 1,  1,   1,    1,    1,     1,     1,      1, ...
  0, 1,  2,   3,    4,    5,     6,     7,      8, ...
  0, 1,  4,   9,   16,   25,    36,    49,     64, ...
  0, 1,  7,  22,   50,   95,   161,   252,    372, ...
  0, 1, 11,  46,  130,  295,   581,  1036,   1716, ...
  0, 1, 16,  86,  296,  791,  1792,  3612,   6672, ...
  0, 1, 22, 148,  610, 1897,  4900, 11088,  22716, ...
  0, 1, 29, 239, 1163, 4166, 12174, 30738,  69498, ...
  0, 1, 37, 367, 2083, 8518, 27966, 78354, 194634, ...
		

Crossrefs

Main diagonal gives A088536 (for n>=1).

Programs

  • Maple
    a:= (n, m)-> `if`(n=0, 1, add(binomial(n+2*j-1, 2*j), j=0..m-1)):
    seq(seq(a(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 22 2013
  • Mathematica
    a[0, 0] = 1; a[n_, m_] := Sum[Binomial[2k+n-1, 2k], {k, 0, m-1}]; Table[a[n - m, m], {n, 0, 12}, {m, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 11 2015 *)

Formula

a(n,m) = 1 if n=0, m>=0, a(n,m) = Sum_{k=0..m-1} C(2k+n-1,2k) otherwise.