cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071943 Triangle T(n,k) (n>=0, 0 <= k <= n) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R=(1,0), V=(0,1) and D=(1,2).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 9, 1, 4, 12, 24, 31, 1, 5, 18, 46, 89, 113, 1, 6, 25, 76, 183, 342, 431, 1, 7, 33, 115, 323, 741, 1355, 1697, 1, 8, 42, 164, 520, 1376, 3054, 5492, 6847, 1, 9, 52, 224, 786, 2326, 5900, 12768, 22669, 28161, 1, 10, 63, 296, 1134, 3684, 10370
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Comments

For another interpretation of this array see the Example section.

Examples

			T(3,2)=7 because we have RRRVV, RRVRV, RRVVR, RVRRV, RVRVR, RRD and RDR.
Array begins:
1,
1, 1,
1, 2, 3,
1, 3, 7, 9,
1, 4, 12, 24, 31,
1, 5, 18, 46, 89, 113,
1, 6, 25, 76, 183, 342, 431,
1, 7, 33, 115, 323, 741, 1355, 1697,
...
Equivalently, let U(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,-1) and (0,-1). Then U(n,n-k) = T(n,k). The U(n,k) array begins:
4:  0  0  0  0  1  5 ...
3:  0  0  0  1  4 18 ...
2:  0  0  1  3 12 46 ...
1:  0  1  2  7 24 89 ...
0:  1  1  3  9 31 113 ...
-------------------------
k/n:0  1  2  3  4  5 ...
The recurrence for this version is: U(0,0)=1, U(n,k)=0 for k>n or k<0; U(n,k) = U(n,k+1) + U(n-1,k+1) + U(n,k-1). E.g. 46 = 18 + 4 + 24. Also U(n,0) = A052709(n-1).
		

Crossrefs

Diagonal entries yield A052709. Row sums are A071356.
Related arrays: A071944, A071945, A071946.

Programs

  • Maple
    U:=proc(n,k) option remember;
    if (n < 0) then RETURN(0);
    elif (n=0) then
       if (k=0) then RETURN(1); else RETURN(0); fi;
    elif (k>n or k<0) then RETURN(0);
    else RETURN(U(n,k+1)+U(n-1,k+1)+U(n-1,k-1));
    fi;
    end;
    for n from 0 to 20 do
    lprint( [seq(U(n,n-i),i=0..n)] );
    od:
  • Mathematica
    t[0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, k] + t[n-1, k-2]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after N. J. A. Sloane *)

Formula

G.f.=(1-q)/[z(2t+2t^2z-1+q)], where q=sqrt(1-4tz-4t^2z^2).
Define T(0,0)=1 and T(n,k)=0 for k<0 and k >n. Then the array is generated by the recurrence T(n,k) = T(n,k-1) + T(n-1,k) + T(n-1,k-2). For example, T(5,3) = 46 = T(5,2) + T(4,3) + T(4,1) = 18 + 24 + 4. - N. J. A. Sloane, Mar 28 2013

Extensions

Edited by Emeric Deutsch, Dec 21 2003
Edited by N. J. A. Sloane, Mar 28 2013