A108073
Triangle in A071943 with rows reversed.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 9, 7, 3, 1, 31, 24, 12, 4, 1, 113, 89, 46, 18, 5, 1, 431, 342, 183, 76, 25, 6, 1, 1697, 1355, 741, 323, 115, 33, 7, 1, 6847, 5492, 3054, 1376, 520, 164, 42, 8, 1, 28161, 22669, 12768, 5900, 2326, 786, 224, 52, 9, 1, 117631, 94962, 54033, 25464
Offset: 0
1; 1,1; 3,2,1; 9,7,3,1; 31,24,12,4,1; ...
-
q:=sqrt(1-4*z-4*z^2): G:=(1-q)/z/(2-t+2*z+t*q): Gserz:=simplify(series(G,z=0,14)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gserz,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form # Emeric Deutsch, Jun 06 2005
-
T[n_, n_] = 1; T[n_, k_] := (k+1)*Sum[Binomial[i, n-k-i] * Binomial[k+2*i, i] / (k+i+1), {i, 1, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Vladimir Kruchinin *)
-
T(n,k):=if n=k then 1 else k*sum((binomial(i,n-k-i)*binomial(k+2*i-1,i))/(k+i),i,1,n-k); /* Vladimir Kruchinin, Apr 27 2015 */
A052709
Expansion of g.f. (1-sqrt(1-4*x-4*x^2))/(2*(1+x)).
Original entry on oeis.org
0, 1, 1, 3, 9, 31, 113, 431, 1697, 6847, 28161, 117631, 497665, 2128127, 9183489, 39940863, 174897665, 770452479, 3411959809, 15181264895, 67833868289, 304256253951, 1369404661761, 6182858317823, 27995941060609, 127100310290431, 578433619525633, 2638370120138751
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- N. J. A. Sloane, Table of n, a(n) for n = 0..499
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Ascending runs in permutations and valued Dyck paths, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 445-463.
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, Restricted generating trees for weak orderings, arXiv:2108.04302 [math.CO], 2021.
- Daniel Birmajer, Juan B. Gil, Peter R. W. McNamara, and Michael D. Weiner, Enumeration of colored Dyck paths via partial Bell polynomials, arXiv:1602.03550 [math.CO], 2016.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
- M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014.
- James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- L. Ferrari, E. Pergola, R. Pinzani, and S. Rinaldi, Jumping succession rules and their generating functions, Discrete Math., 271 (2003), 29-50.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 664
- J. P. S. Kung and A. de Mier, Catalan lattice paths with rook, bishop and spider steps, Journal of Combinatorial Theory, Series A 120 (2013) 379-389. - _N. J. A. Sloane_, Dec 27 2012
- D. Merlini, D. G. Rogers, R. Sprugnoli, and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49 (1997), 301-320.
-
[0] cat [(&+[Binomial(n,k+1)*Binomial(2*k,n-1): k in [0..n-1]])/n: n in [1..30]]; // G. C. Greubel, May 30 2022
-
spec := [S,{C=Prod(B,Z),S=Union(B,C,Z),B=Prod(S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
InverseSeries[Series[(y-y^2)/(1+y^2), {y, 0, 24}], x] (* then A(x)= y(x) *) (* Len Smiley, Apr 12 2000 *)
CoefficientList[Series[(1 -Sqrt[1 -4x -4x^2])/(2(1+x)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 12 2016 *)
-
a(n)=polcoeff((1-sqrt(1-4*x*(1+x+O(x^n))))/2/(1+x),n)
-
[sum(binomial(k, n-k-1)*catalan_number(k) for k in (0..n-1)) for n in (0..30)] # G. C. Greubel, May 30 2022
More terms from Larry Reeves (larryr(AT)acm.org), Oct 03 2000
A071356
Expansion of (1 - 2*x - sqrt(1 - 4*x - 4*x^2))/(4*x^2).
Original entry on oeis.org
1, 2, 6, 20, 72, 272, 1064, 4272, 17504, 72896, 307648, 1312896, 5655808, 24562176, 107419264, 472675072, 2091206144, 9296612352, 41507566592, 186045061120, 836830457856, 3776131489792, 17089399689216, 77548125675520, 352766964908032
Offset: 0
a(3) = 20 = sum of top row terms in M^3 = (9 + 7 + 3 + 1).
- Fung Lam, Table of n, a(n) for n = 0..1465
- Marcelo Aguiar and Walter Moreira, Combinatorics of the free Baxter algebra, arXiv:math/0510169 [math.CO], 2005-2007, see Corollary 3.3.iii.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Miklos Bona, Stack-sorting preimages and 0-1-trees, arXiv:2505.18295 [math.CO], 2025. See p. 3.
- Vuong Bui, Bounding Klarner's constant from above using a simple recurrence, arXiv:2412.20143 [math.CO], 2024.
- Wenqin Cao, Emma Yu Jin, and Zhicong Lin, Enumeration of inversion sequences avoiding triples of relations, Discrete Applied Mathematics (2019); see also author's copy
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Colin Defant, Enumeration of Stack-Sorting Preimages via a Decomposition Lemma, arXiv:1904.02829 [math.CO], 2019.
- Serkan Demiriz, Adem Şahin, and Sezer Erdem, Some topological and geometric properties of novel generalized Motzkin sequence spaces, Rendiconti Circ. Mat. Palermo Ser. 2 (2025) Vol. 74, No. 136. See p. 4.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- Li Guo and Yunnan Li, Braided dendriform and tridendriform algebras and braided Hopf algebras of planar trees, arXiv:1906.06454 [math.QA], 2019.
- Bin Han, The gamma-positive coefficients arising in segmented permutations, Discrete Math., 344 (2012), #112336. See p. 7.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Chetak Hossain, Quotients Derived from Posets in Algebraic and Topological Combinatorics, Ph. D. Dissertation, North Carolina State University (2019).
- Germain Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973), p. 32-33 (same sequence but with offset 1).
- Germain Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Donatella Merlini, Douglas G. Rogers, Renzo Sprugnoli, and M. Cecilia Verri, On some alternative characterizations of Riordan arrays, Canad. J. Math., 49 (1997), 301-320.
- Louis W. Shapiro and Carol J. Wang, A bijection between 3-Motzkin paths and Schroder paths with no peak at odd height, JIS 12 (2009) 09.3.2.
A036774(n) = a(n-1) * n! / 2^(n-1).
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!((1 - 2*x - Sqrt(1 - 4*x - 4*x^2))/(4*x^2))); // Vincenzo Librandi, Jan 21 2020
-
CoefficientList[Series[(1-2*x-Sqrt[1-4*x-4*x^2])/(4*x^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 24 2013 *)
a[n_] := 2^n Hypergeometric2F1[(1-n)/2, -n/2, 2, 2];
Table[a[n], {n, 0, 24}] (* Peter Luschny, May 30 2021 *)
-
a(n)=if(n<0,0,n++; polcoeff(serreverse(x/(1+2*x+2*x^2)+x*O(x^n)),n))
-
{a(n)= if(n<1, n==0, polcoeff( 2/(1 -2*x +sqrt(1 -4*x -4*x^2 +x*O(x^n))), n))}
-
{a(n)= local(A); if(n<0, 0, A= x*O(x^n); n!*simplify(polcoeff( exp(2*x +A)* besseli(1, 2*x* quadgen(8) +A), n)))} /* Michael Somos, Mar 31 2007 */
-
def A071356_list(n): # n>=1
T = [0]*(n+1); R = [1]
for m in (1..n-1):
a,b,c = 1,0,0
for k in range(m,-1,-1):
r = a + 2*(b + c)
if k < m : T[k+2] = u;
a,b,c = T[k-1],a,b
u = r
T[1] = u; R.append(u)
return R
A071356_list(25) # Peter Luschny, Nov 01 2012
A071946
Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R = (1,0), V = (0,1) and D = (3,1).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 6, 13, 19, 19, 1, 8, 23, 44, 63, 63, 1, 10, 37, 87, 156, 219, 219, 1, 12, 55, 155, 330, 568, 787, 787, 1, 14, 77, 255, 629, 1260, 2110, 2897, 2897, 1, 16, 103, 395, 1111, 2527, 4856, 7972, 10869, 10869, 1, 18, 133, 583, 1849, 4706, 10130, 18889, 30545, 41414, 41414
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 2;
1, 4, 6, 6;
1, 6, 13, 19, 19;
...
-
T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
`if`(k<0 or nAlois P. Heinz, May 05 2023
-
T[n_, k_] := T[n, k] = If[n == 0 && k == 0, 1,
If[k < 0 || n < k, 0, T[n-1, k] + T[n, k-1] + T[n-3, k-1]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 25 2025, after Alois P. Heinz *)
A378323
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(3r+k,r) * binomial(r,n-r)/(3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 18, 0, 1, 4, 15, 44, 94, 0, 1, 5, 22, 79, 240, 529, 0, 1, 6, 30, 124, 450, 1390, 3135, 0, 1, 7, 39, 180, 737, 2685, 8404, 19270, 0, 1, 8, 49, 248, 1115, 4532, 16585, 52426, 121732, 0, 1, 9, 60, 329, 1599, 7066, 28624, 105147, 334964, 785496, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 9, 15, 22, 30, 39, ...
0, 18, 44, 79, 124, 180, 248, ...
0, 94, 240, 450, 737, 1115, 1599, ...
0, 529, 1390, 2685, 4532, 7066, 10440, ...
0, 3135, 8404, 16585, 28624, 45655, 69021, ...
-
T(n, k, t=3, u=0) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A223092
Triangle read by rows: let T(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,0), (1,-1) and (0,-1); n-th row of triangle gives T(n,n), T(n,n-1), ..., T(n,0).
Original entry on oeis.org
1, 1, 2, 1, 4, 7, 1, 6, 18, 29, 1, 8, 33, 86, 133, 1, 10, 52, 179, 431, 650, 1, 12, 75, 316, 978, 2238, 3319, 1, 14, 102, 505, 1874, 5406, 11941, 17498, 1, 16, 133, 754, 3235, 11020, 30241, 65086, 94525, 1, 18, 168, 1071, 5193, 20202, 64698, 171045, 360897, 520508, 1, 20, 207, 1464, 7896, 34362, 124455, 380400, 977040, 2029490, 2910895
Offset: 0
Triangle begins:
[1]
[1, 2]
[1, 4, 7]
[1, 6, 18, 29]
[1, 8, 33, 86, 133]
[1, 10, 52, 179, 431, 650]
[1, 12, 75, 316, 978, 2238, 3319]
...
The T(n,k) array begins:
4: 0 0 0 0 1 10 ...
3: 0 0 0 1 8 52 ...
2: 0 0 1 6 33 179 ...
1: 0 1 4 18 86 431 ...
0: 1 2 7 29 133 650 ...
-------------------------
k/n:0 1 2 3 4 5 ...
T(5,2) = T(5,3) + T(4,3) + T(4,2) + T(4,1) = 52 + 8 + 33 + 86 = 179.- _Philippe Deléham_, Mar 29 2013
This is also Dziemianczuk's array N(-i,i+j) read by antidiagonals:
1,2,7,29,133,650,3319,17498, ...
1,4,18,86,431,2238,11941,65086, ...
1,6,33,179,978,5406,30241,171045, ...
1,8,52,316,1874,11020,64698,380400, ...
1,10,75,505,3235,20202,124455,761160, ...
... - _N. J. A. Sloane_, Dec 05 2013
-
T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
`if`(n<0 or k<0 or k>n, 0, add(T(n-l[1], k-l[2]),
l=[[1, 1], [1, 0], [1, -1], [0, -1]]) ))
end:
seq(seq(T(n, n-j), j=0..n), n=0..10); # Alois P. Heinz, Apr 08 2013
-
max = 10; T[0, 0] = 1; T[n_ /; n >= 0, k_ /; 0 <= k <= max] := T[n, k] = T[n, k+1]+T[n-1, k+1]+T[n-1, k]+T[n-1, k-1]; T[n_, k_] = 0; Table[Table[T[n, k], {k, n, 0, -1}], {n, 0, max}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Philippe Deléham *)
Showing 1-6 of 6 results.
Comments