A110681
A convolution triangle of numbers based on A071356.
Original entry on oeis.org
1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 72, 64, 30, 8, 1, 272, 260, 140, 48, 10, 1, 1064, 1072, 636, 256, 70, 12, 1, 4272, 4480, 2856, 1288, 420, 96, 14, 1, 17504, 18944, 12768, 6272, 2320, 640, 126, 16, 1, 72896, 80928, 57024, 29952, 12192, 3852, 924, 160, 18, 1
Offset: 0
Triangle starts:
1;
2, 1;
6, 4, 1;
20, 16, 6, 1;
72, 64, 30, 8, 1;
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11324 (rows 0 <= n <= 150).
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973), p. 32-33.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
-
T[n_, k_] := T[n, k] = Which[n == k == 0, 1, n == 0, 0, k == 0, 0, k > n, 0, True, T[n - 1, k - 1] + 2 T[n - 1, k] + 2 T[n - 1, k + 1]]; Table[T[n, k], {n, 0, 10}, {k, n}] // Flatten (* Michael De Vlieger, Nov 05 2017 *)
A068764
Generalized Catalan numbers 2*x*A(x)^2 -A(x) +1 -x =0.
Original entry on oeis.org
1, 1, 4, 18, 88, 456, 2464, 13736, 78432, 456416, 2697088, 16141120, 97632000, 595912960, 3665728512, 22703097472, 141448381952, 885934151168, 5575020435456, 35230798994432, 223485795258368, 1422572226146304, 9083682419818496, 58169612565614592, 373486362257899520, 2403850703479816192
Offset: 0
G.f. = 1 + x + 4*x^2 + 18*x^3 + 88*x^4 + 456*x^5 + 2464*x^6 + 13736*x^7 + ...
-
Table[SeriesCoefficient[(1-Sqrt[1-8*x*(1-x)])/(4*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
Round@Table[4^(n-1) Hypergeometric2F1[(1-n)/2, 1-n/2, 2, 1/2] + KroneckerDelta[n]/Sqrt[2], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 07 2015 *)
a[ n_] := If[ n < 1, Boole[n == 0], 4^(n - 1) Hypergeometric2F1[ (1 - n)/2, (2 - n)/2, 2, 1/2]]; (* Michael Somos, Nov 08 2015 *)
-
a(n):=sum(binomial(n-1,k-1)*1/k*sum(binomial(k,j)*binomial(k+j,j-1),j,1,k),k,1,n); /* Vladimir Kruchinin, Aug 11 2010 */
-
{a(n) = my(A); if( n<1, n==0, n--; A = x * O(x^n); n! * simplify( polcoeff( exp(4*x + A) * besseli(1, 2*x * quadgen(8) + A), n)))}; /* Michael Somos, Mar 31 2007 */
-
x='x+O('x^66); Vec((1-sqrt(1-8*x*(1-x)))/(4*x)) \\ Joerg Arndt, May 06 2013
A036774
Number of labeled rooted unordered binary trees (each node has out-degree <= 2).
Original entry on oeis.org
0, 1, 2, 9, 60, 540, 6120, 83790, 1345680, 24811920, 516650400, 11992503600, 307069963200, 8598348158400, 261387760233600, 8573572885878000, 301809119163552000, 11349727401396384000, 454104511068656448000, 19261139319649202976000
Offset: 0
A071356(n) = a(n + 1) * 2^n/(n + 1)!.
-
# This is a crude Maple program based on Eq. (14), p. 4, in Takacs (1993). It calculates a(n) for n >= 2. Here, r = 2 is the maximum out-degree of each node.
ff := proc(r, n) simplify(subs(x = 0, diff(sum(x^k/k!, k = 0 .. r)^n, x$(n - 1)))); end;
seq(ff(2, i), i = 2 .. 40); # Petros Hadjicostas, Jun 09 2019
-
Range[0, 20]! CoefficientList[Series[(1 - x - ((x - 1)^2 - 2 x^2)^(1/2))/x, {x, 0, 20}], x] (* Geoffrey Critzer, Nov 22 2011 *)
f[r_, n_][x_] := Sum[x^k/k!, {k, 0, r}]^n;
a[n_] := If[n == 1, 1, Derivative[n - 1][f[2, n]][0]];
a /@ Range[0, 19] (* Jean-François Alcover, Apr 20 2020, after Petros Hadjicostas *)
a[n_] := n! Hypergeometric2F1[1/2 - n/2, 1 - n/2, 2, 2]; a[0] = 0;
Array[a, 20, 0] (* Peter Luschny, Apr 20 2020 *)
-
makelist(n!*sum(binomial(n-1,2*k)*binomial(2*k,k)/(2^k*(k+1)),k,0,floor((n-1)/2)),n,0,20); /* Emanuele Munarini, Feb 06 2013 */
-
a(n)=if(n<1,0,n!*polcoeff(2*x/(1-x+sqrt(1-2*x-x^2+O(x^n))),n))
-
a(n)=if(n<1,0,n!*polcoeff(serreverse(2*x/(2+2*x+x^2)+x*O(x^n)),n))
A062991
Coefficient triangle for certain polynomials N(2; n,x) (rising powers of x).
Original entry on oeis.org
1, 2, -1, 5, -6, 2, 14, -28, 20, -5, 42, -120, 135, -70, 14, 132, -495, 770, -616, 252, -42, 429, -2002, 4004, -4368, 2730, -924, 132, 1430, -8008, 19656, -27300, 23100, -11880, 3432, -429, 4862, -31824, 92820, -157080, 168300, -116688, 51051, -12870, 1430
Offset: 0
The triangle N2 = {a(n,k)} begins:
n\k 0 1 2 3 4 5 6 7 8 9
----------------------------------------------------------------------------
0: 1
1: 2 -1
2: 5 -6 2
3: 14 -28 20 -5
4: 42 -120 135 -70 14
5: 132 -495 770 -616 252 -42
6: 429 -2002 4004 -4368 2730 -924 132
7: 1430 -8008 19656 -27300 23100 -11880 3432 -429
8: 4862 -31824 92820 -157080 168300 -116688 51051 -12870 1430
9: 16796 -125970 426360 -852720 1108536 -969969 570570 -217360 48620 -4862
... formatted by _Wolfdieter Lang_, Jan 20 2020
N(2; 2, x)= 5 - 6*x + 2*x^2.
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- C. A. Francisco, J. Mermin, and J. Schweig, Catalan numbers, binary trees, and pointed pseudotriangulations, 2013.
- V. E. Hoggatt Jr. and Marjorie Bicknell-Johnson, Numerator Polynomial Coefficient Arrays for Catalan and Related Sequence Convolution Triangles, The Fibonacci Quarterly 15 (1977) 30-34. [On p. 31, in the line n = 1, 14 is missing in S_1^4. - _Wolfdieter Lang_, Jan 20 2020 ]
- Joseph T. Iosue, Adam Ehrenberg, Dominik Hangleiter, Abhinav Deshpande, and Alexey V. Gorshkov, Page curves and typical entanglement in linear optics, arXiv:2209.06838 [quant-ph], 2022.
- A. Lakshminarayan, Z. Puchala, and K. Zyczkowski, Diagonal unitary entangling gates and contradiagonal quantum states, arXiv preprint arXiv:1407.1169 [quant-ph], 2014.
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
For an unsigned version see Borel's triangle,
A234950.
-
A062991:= func< n,k | (-1)^k*Binomial(2*n+2,n-k)*Binomial(n+k,k)/(n+1) >;
[A062991(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 27 2024
-
T[n_, k_] := 2 (-1)^k Binomial[2n+1, n] (n-k+1) Binomial[n+1, k]/((k+n+1)(k+n+2));
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018 *)
-
def A062991(n,k): return (-1)^k*binomial(2*n+2,n-k)*binomial(n+k,k)/(n+1)
flatten([[A062991(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 27 2024
A025235
a(n) = (1/2)*s(n+2), where s = A014431.
Original entry on oeis.org
1, 1, 3, 7, 21, 61, 191, 603, 1961, 6457, 21595, 72975, 249085, 857013, 2970007, 10356323, 36311633, 127937649, 452738867, 1608426647, 5734534629, 20511509549, 73583105007, 264687136235, 954482676217, 3449853902761, 12495597328011, 45349353908383
Offset: 0
x + x^2 + 3*x^3 + 7*x^4 + 21*x^5 + 61*x^6 + 191*x^7 + 603*x^8 + 1961*x^9 + ...
a(4) = 21 since the top row of M^4 = (21, 11, 7, 1, 1)
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
- Stefano Capparelli and Alberto Del Fra, Dyck Paths, Motzkin Paths, and the Binomial Transform, Journal of Integer Sequences, 18 (2015), #15.8.5.
- Xiang-Ke Chang, X.-B. Hu, H. Lei, and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- Serkan Demiriz, Adem Şahin, and Sezer Erdem, Some topological and geometric properties of novel generalized Motzkin sequence spaces, Rendiconti Circ. Mat. Palermo Ser. 2 (2025) Vol. 74, No. 136. See p. 4.
- Maciej Dziemiańczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, DOI 10.1007/s00373-013-1357-1.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Louis W. Shapiro and Carol J. Wang, A bijection between 3-Motzkin paths and Schroder paths with no peak at odd height, JIS 12 (2009) 09.3.2.
-
Join[{1}, Table[Sum[2^(k - 1)*Binomial[n + 1, k]*Binomial[n - k + 1, k - 1]/(n + 1), {k,0,n}], {n,0,50}]] (* G. C. Greubel, Jan 27 2017 *)
a[n_] := Hypergeometric2F1[1/2 - n/2, -n/2, 2, 8];
Table[a[n], {n, 0, 27}] (* Peter Luschny, Mar 18 2018 *)
-
{a(n) = if( n<0, 0, polcoeff( serreverse( x / (1 + x + 2*x^2 + x * O(x^n))), n+1))} /* Michael Somos, Jul 12 2003 */
-
{a(n) = if( n<0, 0, polcoeff( (1 - x - sqrt(1 - 2*x -7*x^2 + x^3 * O(x^n)) ) / 4, n+2))} /* Michael Somos, Mar 31 2007 */
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * simplify( polcoeff( exp(x + A) * besseli(1, 2*x * quadgen(8) + A), n)))} /* Michael Somos, Mar 31 2007 */
A107267
A square array of Motzkin related transforms, read by antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 3, 1, 0, 9, 20, 12, 4, 1, 0, 21, 72, 54, 20, 5, 1, 0, 51, 272, 261, 112, 30, 6, 1, 0, 127, 1064, 1323, 672, 200, 42, 7, 1, 0, 323, 4272, 6939, 4224, 1425, 324, 56, 8, 1, 0, 835, 17504, 37341, 27456, 10625, 2664, 490, 72, 9, 1
Offset: 0
Array begins
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 4, 9, 21, 51, ...
1, 2, 6, 20, 72, 272, 1064, ...
1, 3, 12, 54, 261, 1323, 6939, ...
1, 4, 20, 112, 672, 4224, 27456, ...
1, 5, 30, 200, 1425, 10625, 81875, ...
1, 6, 42, 324, 2664, 22896, 203256, ...
A071943
Triangle T(n,k) (n>=0, 0 <= k <= n) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R=(1,0), V=(0,1) and D=(1,2).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 9, 1, 4, 12, 24, 31, 1, 5, 18, 46, 89, 113, 1, 6, 25, 76, 183, 342, 431, 1, 7, 33, 115, 323, 741, 1355, 1697, 1, 8, 42, 164, 520, 1376, 3054, 5492, 6847, 1, 9, 52, 224, 786, 2326, 5900, 12768, 22669, 28161, 1, 10, 63, 296, 1134, 3684, 10370
Offset: 0
T(3,2)=7 because we have RRRVV, RRVRV, RRVVR, RVRRV, RVRVR, RRD and RDR.
Array begins:
1,
1, 1,
1, 2, 3,
1, 3, 7, 9,
1, 4, 12, 24, 31,
1, 5, 18, 46, 89, 113,
1, 6, 25, 76, 183, 342, 431,
1, 7, 33, 115, 323, 741, 1355, 1697,
...
Equivalently, let U(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,-1) and (0,-1). Then U(n,n-k) = T(n,k). The U(n,k) array begins:
4: 0 0 0 0 1 5 ...
3: 0 0 0 1 4 18 ...
2: 0 0 1 3 12 46 ...
1: 0 1 2 7 24 89 ...
0: 1 1 3 9 31 113 ...
-------------------------
k/n:0 1 2 3 4 5 ...
The recurrence for this version is: U(0,0)=1, U(n,k)=0 for k>n or k<0; U(n,k) = U(n,k+1) + U(n-1,k+1) + U(n,k-1). E.g. 46 = 18 + 4 + 24. Also U(n,0) = A052709(n-1).
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- James East, Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
- N. J. A. Sloane, Rows 0 through 100
- N. J. A. Sloane, Illustration of the initial terms of the U(n,k) array
-
U:=proc(n,k) option remember;
if (n < 0) then RETURN(0);
elif (n=0) then
if (k=0) then RETURN(1); else RETURN(0); fi;
elif (k>n or k<0) then RETURN(0);
else RETURN(U(n,k+1)+U(n-1,k+1)+U(n-1,k-1));
fi;
end;
for n from 0 to 20 do
lprint( [seq(U(n,n-i),i=0..n)] );
od:
-
t[0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, k] + t[n-1, k-2]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after N. J. A. Sloane *)
A369126
Expansion of (1/x) * Series_Reversion( x / ((1+x)^4+x^4) ).
Original entry on oeis.org
1, 4, 22, 140, 970, 7104, 54096, 424008, 3398224, 27721024, 229410328, 1921308272, 16253502512, 138683973120, 1192142838656, 10314377770720, 89749921081280, 784913791336192, 6895599255571840, 60825440855493376, 538507243041624864, 4783482648574893056
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)^4+x^4))/x)
-
a(n) = sum(k=0, n\4, binomial(n+1, k)*binomial(4*n-4*k+4, n-4*k))/(n+1);
A336707
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 2^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 11, 20, 1, 1, 5, 19, 45, 72, 1, 1, 6, 30, 100, 197, 272, 1, 1, 7, 44, 201, 562, 903, 1064, 1, 1, 8, 61, 364, 1445, 3304, 4279, 4272, 1, 1, 9, 81, 605, 3249, 10900, 20071, 20793, 17504, 1, 1, 10, 104, 940, 6502, 30526, 85128, 124996, 103049, 72896
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
6, 11, 19, 30, 44, 61, 81, ...
20, 45, 100, 201, 364, 605, 940, ...
72, 197, 562, 1445, 3249, 6502, 11857, ...
272, 903, 3304, 10900, 30526, 73723, 158034, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[2^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, 2^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1-2*x*A)); polcoef(A, n)}
A374497
Expansion of 1/(1 - 4*x - 4*x^2)^(3/2).
Original entry on oeis.org
1, 6, 36, 200, 1080, 5712, 29792, 153792, 787680, 4009280, 20304768, 102405888, 514678528, 2579028480, 12890311680, 64283809792, 319954540032, 1589720712192, 7886437652480, 39069462835200, 193307835764736, 955361266917376, 4716674314223616, 23264437702656000
Offset: 0
-
a[n_]:= Sum[(2*k+1)*Binomial[2*k,k]*Binomial[k,n-k],{k,0,n}]; Array[a,24,0] (* Stefano Spezia, May 08 2025 *)
-
a(n) = binomial(n+2, 2)*sum(k=0, n\2, 2^(n-k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1));
Showing 1-10 of 24 results.
Comments