A377197
Expansion of 1/(1 - 4*x/(1-x))^(3/2).
Original entry on oeis.org
1, 6, 36, 206, 1146, 6258, 33728, 180018, 953628, 5021698, 26315676, 137350746, 714455826, 3705635646, 19171860336, 98973407550, 509963556330, 2623133951730, 13472299015580, 69098721151530, 353966981339070, 1811212435206070, 9258333786967920, 47281424213258070
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x/(1-x))^(3/2))); // Vincenzo Librandi, May 11 2025
-
Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[n-1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 11 2025 *)
-
a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(n-1, n-k));
A374511
Expansion of 1/(1 - 4*x - 4*x^2)^(5/2).
Original entry on oeis.org
1, 10, 80, 560, 3640, 22512, 134400, 781440, 4451040, 24939200, 137865728, 753625600, 4080643840, 21916106240, 116877312000, 619457482752, 3265293719040, 17128725519360, 89462514606080, 465434423336960, 2412895587536896, 12468681310412800, 64242981906022400
Offset: 0
-
a[n_]:=2^(n-3) Pochhammer[n+1, 4]*Hypergeometric2F1[(1-n)/2, -n/2, 3, 2]/3; Array[a,23,0] (* Stefano Spezia, Jul 10 2024 *)
-
a(n) = binomial(n+4, 2)/6*sum(k=0, n\2, 2^(n-k)*binomial(n+2, n-2*k)*binomial(2*k+2, k));
A374513
Expansion of 1/(1 - 4*x - 4*x^2)^(7/2).
Original entry on oeis.org
1, 14, 140, 1176, 8904, 62832, 421344, 2718144, 17008992, 103847744, 621292672, 3654187264, 21182563584, 121263109632, 686660004864, 3851149940736, 21416533501440, 118199459288064, 647926485764096, 3529938203545600, 19124354344775680
Offset: 0
-
a[n_]:=2^(n-4) Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, 2]/45; Array[a,21,0] (* Stefano Spezia, Jul 10 2024 *)
-
a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, 2^(n-k)*binomial(n+3, n-2*k)*binomial(2*k+3, k));
A377186
Expansion of 1/(1 - 4*x^2 - 4*x^3)^(3/2).
Original entry on oeis.org
1, 0, 6, 6, 30, 60, 170, 420, 1050, 2660, 6552, 16380, 40362, 99792, 245520, 603372, 1480050, 3624192, 8863712, 21647340, 52811616, 128700000, 313341756, 762206016, 1852565650, 4499346072, 10919990460, 26485897932, 64201490352, 155536089240, 376606931436
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x^2 - 4*x^3)^(3/2))); // Vincenzo Librandi, May 11 2025
-
Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[k,n-2*k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, May 11 2025 *)
-
a(n) = sum(k=0, n\2, (2*k+1)*binomial(2*k, k)*binomial(k, n-2*k));
A387401
a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n+1,k) * binomial(n+1,n-k), where i is the imaginary unit.
Original entry on oeis.org
1, 4, 18, 80, 360, 1632, 7448, 34176, 157536, 728960, 3384128, 15754752, 73525504, 343870464, 1611288960, 7562801152, 35550504448, 167339022336, 788643765248, 3720901222400, 17573439614976, 83074892775424, 393056192851968, 1861155016212480, 8819174122700800, 41818448615636992
Offset: 0
-
[&+[2^(n-k) * Binomial(n+1,n-2*k) * Binomial(2*k+1,k): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
-
Table[Sum[2^(n-k)*Binomial[n+1,n-2*k]*Binomial[2*k+1,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 04 2025 *)
-
a(n) = sum(k=0, n\2, 2^(n-k)*binomial(n+1, n-2*k)*binomial(2*k+1, k));
Showing 1-5 of 5 results.