cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A374497 Expansion of 1/(1 - 4*x - 4*x^2)^(3/2).

Original entry on oeis.org

1, 6, 36, 200, 1080, 5712, 29792, 153792, 787680, 4009280, 20304768, 102405888, 514678528, 2579028480, 12890311680, 64283809792, 319954540032, 1589720712192, 7886437652480, 39069462835200, 193307835764736, 955361266917376, 4716674314223616, 23264437702656000
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Sum[(2*k+1)*Binomial[2*k,k]*Binomial[k,n-k],{k,0,n}]; Array[a,24,0] (* Stefano Spezia, May 08 2025 *)
  • PARI
    a(n) = binomial(n+2, 2)*sum(k=0, n\2, 2^(n-k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1));

Formula

a(0) = 1, a(1) = 6; a(n) = (2*(2*n+1)*a(n-1) + 4*(n+1)*a(n-2))/n.
a(n) = binomial(n+2,2) * A071356(n).
a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(k,n-k). - Seiichi Manyama, Oct 19 2024
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+1,n-2*k) * binomial(2*k+1,k). - Seiichi Manyama, Aug 20 2025

A374513 Expansion of 1/(1 - 4*x - 4*x^2)^(7/2).

Original entry on oeis.org

1, 14, 140, 1176, 8904, 62832, 421344, 2718144, 17008992, 103847744, 621292672, 3654187264, 21182563584, 121263109632, 686660004864, 3851149940736, 21416533501440, 118199459288064, 647926485764096, 3529938203545600, 19124354344775680
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=2^(n-4) Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, 2]/45; Array[a,21,0] (* Stefano Spezia, Jul 10 2024 *)
  • PARI
    a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, 2^(n-k)*binomial(n+3, n-2*k)*binomial(2*k+3, k));

Formula

a(0) = 1, a(1) = 14; a(n) = (2*(2*n+5)*a(n-1) + 4*(n+5)*a(n-2))/n.
a(n) = (binomial(n+6,3)/20) * Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = 2^(n-4)*Pochhammer(n+1, 6)*hypergeom([(1-n)/2, -n/2], [4], 2)/45. - Stefano Spezia, Jul 10 2024
a(n) = Sum_{k=0..n} (-4)^k * binomial(-7/2,k) * binomial(k,n-k). - Seiichi Manyama, Oct 19 2024

A377189 Expansion of 1/(1 - 4*x^2 - 4*x^3)^(5/2).

Original entry on oeis.org

1, 0, 10, 10, 70, 140, 490, 1260, 3570, 9660, 25872, 69300, 182490, 480480, 1252680, 3255252, 8412690, 21655920, 55535480, 141921780, 361577216, 918529040, 2327337740, 5882631040, 14836032770, 37339221192, 93794645700, 235186913780, 588736957920, 1471462327160
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-4)^k*binomial(-5/2, k)*binomial(k, n-2*k));

Formula

a(0) = 1, a(1) = 0, a(2) = 10; a(n) = (4*(n+3)*a(n-2) + 2*(2*n+9)*a(n-3))/n.
a(n) = Sum_{k=0..floor(n/2)} (-4)^k * binomial(-5/2,k) * binomial(k,n-2*k).

A387402 a(n) = Sum_{k=0..n} (1-i)^k * (1+i)^(n-k) * binomial(n+2,k) * binomial(n+2,n-k), where i is the imaginary unit.

Original entry on oeis.org

1, 6, 32, 160, 780, 3752, 17920, 85248, 404640, 1918400, 9090048, 43064320, 204032192, 966887040, 4583424000, 21735350272, 103114538496, 489392157696, 2323701678080, 11037970513920, 52454251902976, 249373626208256, 1186024281341952, 5642924625100800, 26858183388774400, 127880625111662592
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^(n-k) * Binomial(n+2,n-2*k) * Binomial(2*k+2,k): k in [0..Floor (n/2)]]: n in [0..35]]; // Vincenzo Librandi, Sep 04 2025
  • Mathematica
    Table[Sum[2^(n-k)*Binomial[n+2,n-2*k]*Binomial[2*k+2,k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, Sep 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, 2^(n-k)*binomial(n+2, n-2*k)*binomial(2*k+2, k));
    

Formula

n*(n+4)*a(n) = (n+2) * (2*(2*n+3)*a(n-1) + 4*(n+1)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = [x^n] (1+2*x+2*x^2)^(n+2).
E.g.f.: exp(2*x) * BesselI(2, 2*sqrt(2)*x) / 2, with offset 2.
Showing 1-4 of 4 results.