A364475
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^3.
Original entry on oeis.org
1, 1, 4, 18, 94, 529, 3135, 19270, 121732, 785496, 5155167, 34304706, 230923653, 1569684910, 10759159000, 74281473504, 516089542684, 3605685460750, 25316226436086, 178538289189108, 1264131169628799, 8982889404251721, 64041351551534215
Offset: 0
-
A364475 := proc(n)
add( binomial(3*n-3*k,k) * binomial(3*n-4*k,n-2*k)/(2*n-2*k+1),k=0..n/2) ;
end proc:
seq(A364475(n),n=0..80); # R. J. Mathar, Jul 27 2023
-
a(n) = sum(k=0, n\2, binomial(3*n-3*k, k)*binomial(3*n-4*k, n-2*k)/(2*n-2*k+1));
A371576
G.f. satisfies A(x) = ( 1 + x*A(x)^(3/2) * (1 + x) )^2.
Original entry on oeis.org
1, 2, 9, 44, 240, 1390, 8404, 52426, 334964, 2180928, 14418123, 96525656, 653077411, 4458529390, 30674865164, 212472058410, 1480446579602, 10369560147798, 72972217926122, 515674254743332, 3657933383804959, 26036659997517572, 185905008055923918
Offset: 0
-
a(n, r=2, s=1, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
A378318
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*r+k,n)/(3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 30, 0, 1, 8, 30, 84, 170, 0, 1, 10, 48, 170, 496, 1050, 0, 1, 12, 70, 296, 1050, 3140, 6846, 0, 1, 14, 96, 470, 1920, 6846, 20832, 46374, 0, 1, 16, 126, 700, 3210, 12936, 46374, 142932, 323154, 0, 1, 18, 160, 994, 5040, 22402, 89712, 323154, 1005856, 2301618, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 6, 16, 30, 48, 70, 96, ...
0, 30, 84, 170, 296, 470, 700, ...
0, 170, 496, 1050, 1920, 3210, 5040, ...
0, 1050, 3140, 6846, 12936, 22402, 36492, ...
0, 6846, 20832, 46374, 89712, 159390, 266800, ...
-
T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
Showing 1-3 of 3 results.