cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A364475 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^3.

Original entry on oeis.org

1, 1, 4, 18, 94, 529, 3135, 19270, 121732, 785496, 5155167, 34304706, 230923653, 1569684910, 10759159000, 74281473504, 516089542684, 3605685460750, 25316226436086, 178538289189108, 1264131169628799, 8982889404251721, 64041351551534215
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • Maple
    A364475 := proc(n)
        add( binomial(3*n-3*k,k) * binomial(3*n-4*k,n-2*k)/(2*n-2*k+1),k=0..n/2) ;
    end proc:
    seq(A364475(n),n=0..80); # R. J. Mathar, Jul 27 2023
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*n-3*k, k)*binomial(3*n-4*k, n-2*k)/(2*n-2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-3*k,k) * binomial(3*n-4*k,n-2*k) / (2*n-2*k+1).
D-finite with recurrence 2*n*(2*n+1)*a(n) -(5*n+1)*(3*n-2)*a(n-1) +4*(-25*n^2+75*n-59) *a(n-2) +9*(-15*n^2+69*n-80)*a(n-3) -6*(3*n-8)*(3*n-10) *a(n-4)=0. - R. J. Mathar, Jul 27 2023

A371576 G.f. satisfies A(x) = ( 1 + x*A(x)^(3/2) * (1 + x) )^2.

Original entry on oeis.org

1, 2, 9, 44, 240, 1390, 8404, 52426, 334964, 2180928, 14418123, 96525656, 653077411, 4458529390, 30674865164, 212472058410, 1480446579602, 10369560147798, 72972217926122, 515674254743332, 3657933383804959, 26036659997517572, 185905008055923918
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Column k=2 of A378323.

Programs

  • PARI
    a(n, r=2, s=1, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(3*k+2,k) * binomial(k,n-k)/(3*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A364475.

A378318 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*r+k,n)/(3*r+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 16, 30, 0, 1, 8, 30, 84, 170, 0, 1, 10, 48, 170, 496, 1050, 0, 1, 12, 70, 296, 1050, 3140, 6846, 0, 1, 14, 96, 470, 1920, 6846, 20832, 46374, 0, 1, 16, 126, 700, 3210, 12936, 46374, 142932, 323154, 0, 1, 18, 160, 994, 5040, 22402, 89712, 323154, 1005856, 2301618, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2024

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,     1,      1,      1, ...
  0,    2,     4,     6,     8,     10,     12, ...
  0,    6,    16,    30,    48,     70,     96, ...
  0,   30,    84,   170,   296,    470,    700, ...
  0,  170,   496,  1050,  1920,   3210,   5040, ...
  0, 1050,  3140,  6846, 12936,  22402,  36492, ...
  0, 6846, 20832, 46374, 89712, 159390, 266800, ...
		

Crossrefs

Columns k=0..1 give A000007, A366266.
Main diagonal gives A378378.
Cf. A378323.

Programs

  • PARI
    T(n, k, t=0, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x + x * A_k(x)^(3/k) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A366266.
B(x)^k = B(x)^(k-1) + x * B(x)^(k-1) + x * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k+2) for n > 0.
Showing 1-3 of 3 results.