cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A378323 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(3r+k,r) * binomial(r,n-r)/(3*r+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 18, 0, 1, 4, 15, 44, 94, 0, 1, 5, 22, 79, 240, 529, 0, 1, 6, 30, 124, 450, 1390, 3135, 0, 1, 7, 39, 180, 737, 2685, 8404, 19270, 0, 1, 8, 49, 248, 1115, 4532, 16585, 52426, 121732, 0, 1, 9, 60, 329, 1599, 7066, 28624, 105147, 334964, 785496, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2024

Keywords

Examples

			Square array begins:
  1,    1,    1,     1,     1,     1,     1, ...
  0,    1,    2,     3,     4,     5,     6, ...
  0,    4,    9,    15,    22,    30,    39, ...
  0,   18,   44,    79,   124,   180,   248, ...
  0,   94,  240,   450,   737,  1115,  1599, ...
  0,  529, 1390,  2685,  4532,  7066, 10440, ...
  0, 3135, 8404, 16585, 28624, 45655, 69021, ...
		

Crossrefs

Columns k=0..2 give A000007, A364475, A371576.
Cf. A378318.

Programs

  • PARI
    T(n, k, t=3, u=0) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * (1 + x) * A_k(x)^(3/k) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A364475.
B(x)^k = B(x)^(k-1) + x * B(x)^(k+2) + x^2 * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k+2) + T(n-2,k+2) for n > 1.

A378317 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(2*r+k,n)/(2*r+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 4, 0, 1, 6, 12, 12, 0, 1, 8, 24, 40, 40, 0, 1, 10, 40, 92, 144, 144, 0, 1, 12, 60, 176, 360, 544, 544, 0, 1, 14, 84, 300, 752, 1440, 2128, 2128, 0, 1, 16, 112, 472, 1400, 3200, 5872, 8544, 8544, 0, 1, 18, 144, 700, 2400, 6352, 13664, 24336, 35008, 35008, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2024

Keywords

Examples

			Square array begins:
  1,   1,    1,    1,     1,     1,     1, ...
  0,   2,    4,    6,     8,    10,    12, ...
  0,   4,   12,   24,    40,    60,    84, ...
  0,  12,   40,   92,   176,   300,   472, ...
  0,  40,  144,  360,   752,  1400,  2400, ...
  0, 144,  544, 1440,  3200,  6352, 11616, ...
  0, 544, 2128, 5872, 13664, 28480, 54768, ...
		

Crossrefs

Columns k=0..1 give A000007, A025227(n+1).
Main diagonal gives A333473.

Programs

  • PARI
    T(n, k, t=0, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x + x * A_k(x)^(2/k) )^k for k > 0.
G.f. of column k: (B(x)/x)^k where B(x) is the g.f. of A025227.
B(x)^k = B(x)^(k-1) + x * B(x)^(k-1) + x * B(x)^(k+1). So T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k+1) for n > 0.

A378378 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+3*k-1,3*k).

Original entry on oeis.org

1, 2, 16, 170, 1920, 22402, 266800, 3222634, 39328768, 483752258, 5987236816, 74474238698, 930212870784, 11659157743170, 146567181170160, 1847198697449770, 23332153206562816, 295286370825453442, 3743540075432798608, 47532529217041519658, 604366048841146280320
Offset: 0

Views

Author

Seiichi Manyama, Nov 24 2024

Keywords

Crossrefs

Main diagonal of A378318.

Programs

  • Mathematica
    a[n_]:=HypergeometricPFQ[{(1+n)/3,(2+n)/3,-n,n/3},{1/3,2/3,1},-1]; Array[a,21,0] (* Stefano Spezia, Nov 24 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(n+3*k-1, 3*k));

Formula

a(n) = hypergeom([(1+n)/3, (2+n)/3, -n, n/3], [1/3, 2/3, 1], -1). - Stefano Spezia, Nov 24 2024
Showing 1-3 of 3 results.