A366221
G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^2*A(x)^3.
Original entry on oeis.org
1, 1, 5, 25, 145, 905, 5941, 40433, 282721, 2018897, 14661349, 107945993, 803922289, 6045458905, 45840518933, 350100674785, 2690717983169, 20794719218593, 161502488175557, 1259855507859193, 9867012143508305, 77554946281194793, 611575725258403061
Offset: 0
-
nmax = 22; A[_] = 1;
Do[A[x_] = 1 + x*(1 + x)^2*A[x]^3 + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
-
a(n) = sum(k=0, n, binomial(2*k, n-k)*binomial(3*k, k)/(2*k+1));
A365178
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x).
Original entry on oeis.org
1, 1, 5, 30, 210, 1595, 12791, 106574, 913562, 8004861, 71375653, 645536234, 5907683486, 54605672300, 509043322720, 4780441915832, 45182744331388, 429472919087158, 4102806757542542, 39370967793387086, 379335734835510622, 3668220243145708341
Offset: 0
-
a(n) = sum(k=0, n, binomial(k, n-k)*binomial(4*k, k)/(3*k+1));
A365184
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x).
Original entry on oeis.org
1, 1, 6, 45, 395, 3775, 38146, 400826, 4335455, 47951065, 539823620, 6165377836, 71261299056, 831990025420, 9797505040130, 116235417614900, 1387958781395535, 16668362761081560, 201190667288072005, 2439418470063468505, 29698136499328762445
Offset: 0
-
a(n) = sum(k=0, n, binomial(k, n-k)*binomial(5*k, k)/(4*k+1));
A364474
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x).
Original entry on oeis.org
1, 1, 4, 16, 77, 403, 2228, 12800, 75653, 457022, 2809266, 17514200, 110480475, 703850686, 4522217364, 29268545416, 190645760149, 1248817411471, 8221323983431, 54365667330636, 360954069730636, 2405225494066647, 16080210766344354, 107828663888705292
Offset: 0
-
A364474 := proc(n)
add( binomial(3*n-5*k,k) * binomial(3*n-6*k,n-2*k)/(2*n-4*k+1),k=0..n/2) ;
end proc:
seq(A364474(n),n=0..80); # R. J. Mathar, Jul 27 2023
-
Table[Sum[Binomial[3*n - 5*k, k]*Binomial[3*n - 6*k, n - 2*k]/(2*n - 4*k + 1), {k, 0, Floor[n/2]}], {n, 0, 25}] (* Wesley Ivan Hurt, May 25 2024 *)
-
a(n) = sum(k=0, n\2, binomial(3*n-5*k, k)*binomial(3*n-6*k, n-2*k)/(2*n-4*k+1));
A371576
G.f. satisfies A(x) = ( 1 + x*A(x)^(3/2) * (1 + x) )^2.
Original entry on oeis.org
1, 2, 9, 44, 240, 1390, 8404, 52426, 334964, 2180928, 14418123, 96525656, 653077411, 4458529390, 30674865164, 212472058410, 1480446579602, 10369560147798, 72972217926122, 515674254743332, 3657933383804959, 26036659997517572, 185905008055923918
Offset: 0
-
a(n, r=2, s=1, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
A364478
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^8.
Original entry on oeis.org
1, 1, 4, 23, 154, 1124, 8675, 69626, 575243, 4859778, 41789764, 364565277, 3218581695, 28702642553, 258172627259, 2339496034381, 21337716782873, 195726876816623, 1804472496834650, 16711389876481027, 155395461519245354, 1450298253483719944
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(3*n+2*k, k)*binomial(3*n+k, n-2*k)/(2*n+3*k+1));
A378323
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(3r+k,r) * binomial(r,n-r)/(3*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 18, 0, 1, 4, 15, 44, 94, 0, 1, 5, 22, 79, 240, 529, 0, 1, 6, 30, 124, 450, 1390, 3135, 0, 1, 7, 39, 180, 737, 2685, 8404, 19270, 0, 1, 8, 49, 248, 1115, 4532, 16585, 52426, 121732, 0, 1, 9, 60, 329, 1599, 7066, 28624, 105147, 334964, 785496, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 9, 15, 22, 30, 39, ...
0, 18, 44, 79, 124, 180, 248, ...
0, 94, 240, 450, 737, 1115, 1599, ...
0, 529, 1390, 2685, 4532, 7066, 10440, ...
0, 3135, 8404, 16585, 28624, 45655, 69021, ...
-
T(n, k, t=3, u=0) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A379190
G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x))^3.
Original entry on oeis.org
1, 4, 30, 304, 3557, 45150, 604222, 8393282, 119872890, 1749183075, 25964512607, 390828464403, 5951561595889, 91523131078999, 1419293428538496, 22169968253466467, 348507676062911520, 5509187208564734328, 87522347516801353980, 1396619714730284551913, 22375420057050167868366
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(3*n+6*k+3, n-k)/(n+2*k+1));
A366222
G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^4*A(x)^3.
Original entry on oeis.org
1, 1, 7, 42, 287, 2114, 16338, 130802, 1075355, 9025656, 77021482, 666267502, 5829209046, 51492030953, 458612500526, 4113879873624, 37133888342707, 337041718357465, 3074153880004188, 28162578841220534, 259020296989987934, 2390818256963083305
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k, n-k)*binomial(3*k, k)/(2*k+1));
A367040
G.f. satisfies A(x) = 1 + x^2 + x*A(x)^3.
Original entry on oeis.org
1, 1, 4, 15, 70, 360, 1953, 11008, 63837, 378390, 2282205, 13960890, 86411232, 540166219, 3405341160, 21625820793, 138216775785, 888371346825, 5738510504979, 37234351046835, 242567430368298, 1585979835198675, 10403866383915844, 68453912880893025
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(2*(n-2*k)+1, k)*binomial(3*(n-2*k), n-2*k)/(2*(n-2*k)+1));
Showing 1-10 of 12 results.