cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A366221 G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^2*A(x)^3.

Original entry on oeis.org

1, 1, 5, 25, 145, 905, 5941, 40433, 282721, 2018897, 14661349, 107945993, 803922289, 6045458905, 45840518933, 350100674785, 2690717983169, 20794719218593, 161502488175557, 1259855507859193, 9867012143508305, 77554946281194793, 611575725258403061
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[_] = 1;
    Do[A[x_] = 1 + x*(1 + x)^2*A[x]^3 + O[x]^(nmax+1) // Normal, {nmax+1}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*k, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*k,n-k) * binomial(3*k,k)/(2*k+1).
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366434.

A365178 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x).

Original entry on oeis.org

1, 1, 5, 30, 210, 1595, 12791, 106574, 913562, 8004861, 71375653, 645536234, 5907683486, 54605672300, 509043322720, 4780441915832, 45182744331388, 429472919087158, 4102806757542542, 39370967793387086, 379335734835510622, 3668220243145708341
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(k, n-k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(k,n-k)/(4*k+1) = Sum_{k=0..n} binomial(k,n-k) * A002293(k).

A365184 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x).

Original entry on oeis.org

1, 1, 6, 45, 395, 3775, 38146, 400826, 4335455, 47951065, 539823620, 6165377836, 71261299056, 831990025420, 9797505040130, 116235417614900, 1387958781395535, 16668362761081560, 201190667288072005, 2439418470063468505, 29698136499328762445
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(k, n-k)*binomial(5*k, k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(5*k+1,k) * binomial(k,n-k)/(5*k+1) = Sum_{k=0..n} binomial(k,n-k) * A002294(k).

A364474 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x).

Original entry on oeis.org

1, 1, 4, 16, 77, 403, 2228, 12800, 75653, 457022, 2809266, 17514200, 110480475, 703850686, 4522217364, 29268545416, 190645760149, 1248817411471, 8221323983431, 54365667330636, 360954069730636, 2405225494066647, 16080210766344354, 107828663888705292
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • Maple
    A364474 := proc(n)
        add( binomial(3*n-5*k,k) * binomial(3*n-6*k,n-2*k)/(2*n-4*k+1),k=0..n/2) ;
    end proc:
    seq(A364474(n),n=0..80); # R. J. Mathar, Jul 27 2023
  • Mathematica
    Table[Sum[Binomial[3*n - 5*k, k]*Binomial[3*n - 6*k, n - 2*k]/(2*n - 4*k + 1), {k, 0, Floor[n/2]}], {n, 0, 25}] (* Wesley Ivan Hurt, May 25 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*n-5*k, k)*binomial(3*n-6*k, n-2*k)/(2*n-4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-5*k,k) * binomial(3*n-6*k,n-2*k) / (2*n-4*k+1).
D-finite with recurrence 2*n*(2*n+1)*(3*n-7)*a(n) -3*(3*n-1)*(3*n-7)*(3*n-2) *a(n-1) -2*(n-3)*(18*n^2-33*n+4) *a(n-2) +2*(18*n^3-141*n^2+287*n-64) *a(n-4) -2*(n-4)*(3*n-1)*(2*n-13)*a(n-6)=0. - R. J. Mathar, Jul 27 2023

A371576 G.f. satisfies A(x) = ( 1 + x*A(x)^(3/2) * (1 + x) )^2.

Original entry on oeis.org

1, 2, 9, 44, 240, 1390, 8404, 52426, 334964, 2180928, 14418123, 96525656, 653077411, 4458529390, 30674865164, 212472058410, 1480446579602, 10369560147798, 72972217926122, 515674254743332, 3657933383804959, 26036659997517572, 185905008055923918
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Column k=2 of A378323.

Programs

  • PARI
    a(n, r=2, s=1, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(3*k+2,k) * binomial(k,n-k)/(3*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A364475.

A364478 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^2*A(x)^8.

Original entry on oeis.org

1, 1, 4, 23, 154, 1124, 8675, 69626, 575243, 4859778, 41789764, 364565277, 3218581695, 28702642553, 258172627259, 2339496034381, 21337716782873, 195726876816623, 1804472496834650, 16711389876481027, 155395461519245354, 1450298253483719944
Offset: 0

Views

Author

Seiichi Manyama, Jul 26 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(3*n+2*k, k)*binomial(3*n+k, n-2*k)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+2*k,k) * binomial(3*n+k,n-2*k) / (2*n+3*k+1).

A378323 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(3r+k,r) * binomial(r,n-r)/(3*r+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 18, 0, 1, 4, 15, 44, 94, 0, 1, 5, 22, 79, 240, 529, 0, 1, 6, 30, 124, 450, 1390, 3135, 0, 1, 7, 39, 180, 737, 2685, 8404, 19270, 0, 1, 8, 49, 248, 1115, 4532, 16585, 52426, 121732, 0, 1, 9, 60, 329, 1599, 7066, 28624, 105147, 334964, 785496, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 23 2024

Keywords

Examples

			Square array begins:
  1,    1,    1,     1,     1,     1,     1, ...
  0,    1,    2,     3,     4,     5,     6, ...
  0,    4,    9,    15,    22,    30,    39, ...
  0,   18,   44,    79,   124,   180,   248, ...
  0,   94,  240,   450,   737,  1115,  1599, ...
  0,  529, 1390,  2685,  4532,  7066, 10440, ...
  0, 3135, 8404, 16585, 28624, 45655, 69021, ...
		

Crossrefs

Columns k=0..2 give A000007, A364475, A371576.
Cf. A378318.

Programs

  • PARI
    T(n, k, t=3, u=0) = if(k==0, 0^n, k*sum(r=0, n, binomial(t*r+u*(n-r)+k, r)*binomial(r, n-r)/(t*r+u*(n-r)+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * (1 + x) * A_k(x)^(3/k) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A364475.
B(x)^k = B(x)^(k-1) + x * B(x)^(k+2) + x^2 * B(x)^(k+2). So T(n,k) = T(n,k-1) + T(n-1,k+2) + T(n-2,k+2) for n > 1.

A379190 G.f. A(x) satisfies A(x) = (1 + x*A(x)^3) * (1 + x*A(x))^3.

Original entry on oeis.org

1, 4, 30, 304, 3557, 45150, 604222, 8393282, 119872890, 1749183075, 25964512607, 390828464403, 5951561595889, 91523131078999, 1419293428538496, 22169968253466467, 348507676062911520, 5509187208564734328, 87522347516801353980, 1396619714730284551913, 22375420057050167868366
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+2*k+1, k)*binomial(3*n+6*k+3, n-k)/(n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+2*k+1,k) * binomial(3*n+6*k+3,n-k)/(n+2*k+1).

A366222 G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^4*A(x)^3.

Original entry on oeis.org

1, 1, 7, 42, 287, 2114, 16338, 130802, 1075355, 9025656, 77021482, 666267502, 5829209046, 51492030953, 458612500526, 4113879873624, 37133888342707, 337041718357465, 3074153880004188, 28162578841220534, 259020296989987934, 2390818256963083305
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k,n-k) * binomial(3*k,k)/(2*k+1).

A367040 G.f. satisfies A(x) = 1 + x^2 + x*A(x)^3.

Original entry on oeis.org

1, 1, 4, 15, 70, 360, 1953, 11008, 63837, 378390, 2282205, 13960890, 86411232, 540166219, 3405341160, 21625820793, 138216775785, 888371346825, 5738510504979, 37234351046835, 242567430368298, 1585979835198675, 10403866383915844, 68453912880893025
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*(n-2*k)+1, k)*binomial(3*(n-2*k), n-2*k)/(2*(n-2*k)+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(2*(n-2*k)+1,k) * binomial(3*(n-2*k),n-2*k)/(2*(n-2*k)+1).
Showing 1-10 of 12 results. Next