cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366221 G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^2*A(x)^3.

Original entry on oeis.org

1, 1, 5, 25, 145, 905, 5941, 40433, 282721, 2018897, 14661349, 107945993, 803922289, 6045458905, 45840518933, 350100674785, 2690717983169, 20794719218593, 161502488175557, 1259855507859193, 9867012143508305, 77554946281194793, 611575725258403061
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[_] = 1;
    Do[A[x_] = 1 + x*(1 + x)^2*A[x]^3 + O[x]^(nmax+1) // Normal, {nmax+1}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(2*k, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*k,n-k) * binomial(3*k,k)/(2*k+1).
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366434.

A366241 G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^4*A(x)^3.

Original entry on oeis.org

1, 2, 10, 72, 552, 4593, 40185, 364413, 3395217, 32305005, 312589540, 3066565720, 30430287693, 304907935707, 3080617021926, 31349533179726, 321038696185371, 3305935381202847, 34211612434972446, 355605873560512974, 3710978684625678870
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(6*k+1, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(6*k+1,n-k) * binomial(3*k,k)/(2*k+1).
Showing 1-2 of 2 results.