cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366239 G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^2*A(x)^3.

Original entry on oeis.org

1, 2, 8, 49, 329, 2401, 18452, 147140, 1206157, 10101011, 86047138, 743288984, 6495476548, 57321239999, 510104531479, 4572492374150, 41247768216331, 374175606700172, 3411195598361653, 31236732721224722, 287182875831208468, 2649838553953071239
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,n-k) * binomial(3*k,k)/(2*k+1).

A366240 G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^3*A(x)^3.

Original entry on oeis.org

1, 2, 9, 60, 432, 3378, 27792, 237122, 2079132, 18620709, 169614960, 1566540573, 14635978998, 138080055192, 1313596636812, 12587218990644, 121378106852988, 1176981533610012, 11469587139406515, 112265849283068877, 1103256200355696855
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*k+1, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(5*k+1,n-k) * binomial(3*k,k)/(2*k+1).
Showing 1-2 of 2 results.