cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A365178 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x).

Original entry on oeis.org

1, 1, 5, 30, 210, 1595, 12791, 106574, 913562, 8004861, 71375653, 645536234, 5907683486, 54605672300, 509043322720, 4780441915832, 45182744331388, 429472919087158, 4102806757542542, 39370967793387086, 379335734835510622, 3668220243145708341
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(k, n-k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(k,n-k)/(4*k+1) = Sum_{k=0..n} binomial(k,n-k) * A002293(k).

A365189 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^5).

Original entry on oeis.org

1, 1, 6, 50, 485, 5130, 57391, 667777, 7999095, 97986680, 1221813880, 15456556791, 197887386913, 2559189842240, 33383097891135, 438714241508615, 5803049210371375, 77199163872173757, 1032215519193531310, 13864180990526161995, 186975433988014039830
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(5*n+1, n-k))/(5*n+1);

Formula

a(n) = (1/(5*n+1)) * Sum_{k=0..floor(n/2)} binomial(n-k,k) * binomial(5*n+1,n-k).

A365186 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^2).

Original entry on oeis.org

1, 1, 6, 47, 428, 4241, 44407, 483358, 5414618, 62014112, 722870120, 8547768832, 102284029963, 1236274747490, 15070955944288, 185089043535730, 2287843817573898, 28440852786725695, 355345599519983962, 4459821165693379625, 56200963128262312342
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(k, n-k)/(2*n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(k,n-k)/(2*n+3*k+1).

A365185 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)).

Original entry on oeis.org

1, 1, 6, 46, 411, 3996, 41062, 438662, 4823133, 54221518, 620404859, 7201317005, 84590041441, 1003656037278, 12010861830069, 144804336388912, 1757106190680819, 21443109365898743, 263009775111233392, 3240530659303505547, 40088688455992604594
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(k, n-k)/(n+4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(k,n-k)/(n+4*k+1).

A365187 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 6, 48, 446, 4511, 48218, 535800, 6127598, 71648868, 852668952, 10293847592, 125759270354, 1551872951050, 19314892116764, 242182938963024, 3056337851481678, 38790948190319404, 494825459824571528, 6340628082364678016, 81577931200018721464
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+2*k+1, k)*binomial(k, n-k)/(3*n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*n+2*k+1,k) * binomial(k,n-k)/(3*n+2*k+1).

A365188 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x*A(x)^4).

Original entry on oeis.org

1, 1, 6, 49, 465, 4807, 52533, 596936, 6981798, 83497115, 1016367737, 12550853210, 156845913315, 1979870172453, 25207383853375, 323325558146400, 4174108907656633, 54195445136831670, 707225283913589280, 9270735916525207605, 122020617365557674605
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+k+1, k)*binomial(k, n-k)/(4*n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*n+k+1,k) * binomial(k,n-k)/(4*n+k+1).

A371578 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) * (1 + x) )^2.

Original entry on oeis.org

1, 2, 13, 102, 916, 8880, 90607, 958794, 10426089, 115798342, 1308035135, 14980661482, 173553196140, 2030265152576, 23948922940698, 284543368174220, 3402103050539715, 40903437537402792, 494215527894112099, 5997782678374854902, 73078635875447981850
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(5*k+2,k) * binomial(k,n-k)/(5*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A365184.

A367017 G.f. satisfies A(x) = 1 + x*A(x)^5*(1 - x).

Original entry on oeis.org

1, 1, 4, 25, 185, 1495, 12776, 113534, 1038535, 9713905, 92480570, 893215584, 8730601596, 86198356180, 858388634250, 8611765147660, 86958794304735, 883103159075400, 9013769253136005, 92419535419392485, 951446700812718515, 9831013564639954705
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k, n-k)*binomial(5*k, k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(k,n-k) * A002294(k).

A381940 G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 2, 7, 51, 440, 4170, 41921, 438972, 4736281, 52286520, 587774685, 6705201456, 77426676892, 903251324476, 10629495065550, 126032922655030, 1504194199010435, 18056321542477095, 217859030049153565, 2640609137351540510, 32137554969392230950, 392580762083089376630
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(k+1, n-k)/(5*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(5*k+1,k) * binomial(k+1,n-k)/(5*k+1).
a(n) = A365184(n) + A365184(n-1).
Showing 1-9 of 9 results.