cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A371576 G.f. satisfies A(x) = ( 1 + x*A(x)^(3/2) * (1 + x) )^2.

Original entry on oeis.org

1, 2, 9, 44, 240, 1390, 8404, 52426, 334964, 2180928, 14418123, 96525656, 653077411, 4458529390, 30674865164, 212472058410, 1480446579602, 10369560147798, 72972217926122, 515674254743332, 3657933383804959, 26036659997517572, 185905008055923918
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Column k=2 of A378323.

Programs

  • PARI
    a(n, r=2, s=1, t=3, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(3*k+2,k) * binomial(k,n-k)/(3*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A364475.

A371577 G.f. satisfies A(x) = ( 1 + x*A(x)^2 * (1 + x) )^2.

Original entry on oeis.org

1, 2, 11, 70, 505, 3910, 31772, 267280, 2307982, 20339946, 182207333, 1654250474, 15187764411, 140767293560, 1315349040350, 12377806027892, 117200381305538, 1115791797318548, 10674418686087377, 102563189093302366, 989321056200478417
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+2,k) * binomial(k,n-k)/(2*k+1).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A365178.

A371580 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) * (1 + x)^2 )^2.

Original entry on oeis.org

1, 2, 15, 126, 1211, 12544, 136668, 1543696, 17914325, 212308682, 2558783193, 31265632206, 386430721728, 4822586987324, 60686262591525, 769167948066520, 9810280980482827, 125819903217235130, 1621648696092783746, 20993171222948561746, 272848383910348808089
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=2, t=5, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(5*k+2,k) * binomial(2*k,n-k)/(5*k+2).

A371583 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) / (1 - x) )^2.

Original entry on oeis.org

1, 2, 13, 104, 940, 9166, 94044, 1000602, 10939780, 122161128, 1387361151, 15974899766, 186069556707, 2188416960148, 25953579753464, 310022550197360, 3726709235290628, 45047517497268968, 547217895030263028, 6676784544374859088, 81789906534091716353
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = 2 * Sum_{k=0..n} binomial(5*k+2,k) * binomial(n-1,n-k)/(5*k+2).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A349332.
Showing 1-4 of 4 results.