cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367016 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 - x).

Original entry on oeis.org

1, 1, 3, 14, 78, 475, 3057, 20446, 140702, 989789, 7085635, 51451482, 378049810, 2805616460, 20999408480, 158337719608, 1201585477436, 9170328295222, 70339328959266, 541953619822062, 4192560258116202, 32552250308843605, 253583917423039079
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k, n-k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(k,n-k) * A002293(k).

A366980 G.f. satisfies A(x) = 1 + x*A(x)^5 * (1 - x*A(x)).

Original entry on oeis.org

1, 1, 4, 24, 171, 1336, 11060, 95298, 845649, 7675398, 70921457, 664905445, 6309060313, 60473691666, 584684295383, 5695312881404, 55839455579659, 550621231581791, 5457218248143692, 54332533436452743, 543148496962279730, 5449742750024662824
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+4*k+1, k)*binomial(k, n-k)/(n+4*k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+4*k+1,k) * binomial(k,n-k)/(n+4*k+1).
Showing 1-2 of 2 results.