cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A119254 Row sums of A071946.

Original entry on oeis.org

1, 2, 5, 17, 58, 202, 729, 2695, 10140, 38719, 149682, 584672, 2304045, 9149194, 36573273, 147057039, 594374148, 2413480053, 9840832968, 40276235226, 165403090815, 681373222191, 2814872996190, 11659083772986, 48407568680323, 201431186725778, 839913707978789
Offset: 0

Views

Author

Joshua Zucker, May 10 2006

Keywords

Crossrefs

Cf. A071946 is the triangle and A071969 has the last number of each row.

A108076 Triangle in A071946 with rows reversed.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 6, 6, 4, 1, 19, 19, 13, 6, 1, 63, 63, 44, 23, 8, 1, 219, 219, 156, 87, 37, 10, 1, 787, 787, 568, 330, 155, 55, 12, 1, 2897, 2897, 2110, 1260, 629, 255, 77, 14, 1, 10869, 10869, 7972, 4856, 2527, 1111, 395, 103, 16, 1, 41414, 41414, 30545, 18889, 10130, 4706, 1849, 583, 133, 18, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jun 05 2005

Keywords

Examples

			Triangle T(n,k) begins:
   1;
   1,  1;
   2,  2,  1;
   6,  6,  4, 1;
  19, 19, 13, 6, 1;
  ...
		

Crossrefs

Cf. A071946.

Formula

T(n,k) = A071946(n,n-k). - David Wasserman, May 07 2008

Extensions

More terms from R. J. Mathar, Aug 13 2007
More terms from David Wasserman, May 07 2008

A071969 a(n) = Sum_{k=0..floor(n/3)} (binomial(n+1, k)*binomial(2*n-3*k, n-3*k)/(n+1)).

Original entry on oeis.org

1, 1, 2, 6, 19, 63, 219, 787, 2897, 10869, 41414, 159822, 623391, 2453727, 9733866, 38877318, 156206233, 630947421, 2560537092, 10435207116, 42689715279, 175243923783, 721649457417, 2980276087005, 12340456995177, 51222441676513, 213090270498764, 888321276659112
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2002

Keywords

Comments

Diagonal of A071946. - Emeric Deutsch, Dec 15 2004
Last (largest) number of each row of A071946. - David Scambler, May 15 2012

Crossrefs

Cf. A071946 is the triangle and A119254 has the row sums.

Programs

  • Maple
    A071969 := n->add( binomial(n+1,k)*binomial(2*n-3*k,n-3*k)/(n+1),k=0..floor(n/3));
    Order:=30: g:=solve(series((H-H^2)/(1+H^3),H)=z,H): seq(coeff(g,z^n),n=1..28); # Emeric Deutsch, Dec 15 2004
  • Mathematica
    Table[Sum[Binomial[n+1,k] Binomial[2n-3k,n-3k]/(n+1),{k,0,Floor[n/3]}],{n,0,40}] (* Harvey P. Dale, Jul 20 2022 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x^3)+x^2*O(x^n)),n+1))

Formula

G.f. (offset 1) is series reversion of (x-x^2)/(1+x^3).

A071943 Triangle T(n,k) (n>=0, 0 <= k <= n) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R=(1,0), V=(0,1) and D=(1,2).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 9, 1, 4, 12, 24, 31, 1, 5, 18, 46, 89, 113, 1, 6, 25, 76, 183, 342, 431, 1, 7, 33, 115, 323, 741, 1355, 1697, 1, 8, 42, 164, 520, 1376, 3054, 5492, 6847, 1, 9, 52, 224, 786, 2326, 5900, 12768, 22669, 28161, 1, 10, 63, 296, 1134, 3684, 10370
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Comments

For another interpretation of this array see the Example section.

Examples

			T(3,2)=7 because we have RRRVV, RRVRV, RRVVR, RVRRV, RVRVR, RRD and RDR.
Array begins:
1,
1, 1,
1, 2, 3,
1, 3, 7, 9,
1, 4, 12, 24, 31,
1, 5, 18, 46, 89, 113,
1, 6, 25, 76, 183, 342, 431,
1, 7, 33, 115, 323, 741, 1355, 1697,
...
Equivalently, let U(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,-1) and (0,-1). Then U(n,n-k) = T(n,k). The U(n,k) array begins:
4:  0  0  0  0  1  5 ...
3:  0  0  0  1  4 18 ...
2:  0  0  1  3 12 46 ...
1:  0  1  2  7 24 89 ...
0:  1  1  3  9 31 113 ...
-------------------------
k/n:0  1  2  3  4  5 ...
The recurrence for this version is: U(0,0)=1, U(n,k)=0 for k>n or k<0; U(n,k) = U(n,k+1) + U(n-1,k+1) + U(n,k-1). E.g. 46 = 18 + 4 + 24. Also U(n,0) = A052709(n-1).
		

Crossrefs

Diagonal entries yield A052709. Row sums are A071356.
Related arrays: A071944, A071945, A071946.

Programs

  • Maple
    U:=proc(n,k) option remember;
    if (n < 0) then RETURN(0);
    elif (n=0) then
       if (k=0) then RETURN(1); else RETURN(0); fi;
    elif (k>n or k<0) then RETURN(0);
    else RETURN(U(n,k+1)+U(n-1,k+1)+U(n-1,k-1));
    fi;
    end;
    for n from 0 to 20 do
    lprint( [seq(U(n,n-i),i=0..n)] );
    od:
  • Mathematica
    t[0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, k] + t[n-1, k-2]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after N. J. A. Sloane *)

Formula

G.f.=(1-q)/[z(2t+2t^2z-1+q)], where q=sqrt(1-4tz-4t^2z^2).
Define T(0,0)=1 and T(n,k)=0 for k<0 and k >n. Then the array is generated by the recurrence T(n,k) = T(n,k-1) + T(n-1,k) + T(n-1,k-2). For example, T(5,3) = 46 = T(5,2) + T(4,3) + T(4,1) = 18 + 24 + 4. - N. J. A. Sloane, Mar 28 2013

Extensions

Edited by Emeric Deutsch, Dec 21 2003
Edited by N. J. A. Sloane, Mar 28 2013
Showing 1-4 of 4 results.