Original entry on oeis.org
1, 2, 5, 17, 58, 202, 729, 2695, 10140, 38719, 149682, 584672, 2304045, 9149194, 36573273, 147057039, 594374148, 2413480053, 9840832968, 40276235226, 165403090815, 681373222191, 2814872996190, 11659083772986, 48407568680323, 201431186725778, 839913707978789
Offset: 0
Cf.
A071946 is the triangle and
A071969 has the last number of each row.
A108076
Triangle in A071946 with rows reversed.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 6, 6, 4, 1, 19, 19, 13, 6, 1, 63, 63, 44, 23, 8, 1, 219, 219, 156, 87, 37, 10, 1, 787, 787, 568, 330, 155, 55, 12, 1, 2897, 2897, 2110, 1260, 629, 255, 77, 14, 1, 10869, 10869, 7972, 4856, 2527, 1111, 395, 103, 16, 1, 41414, 41414, 30545, 18889, 10130, 4706, 1849, 583, 133, 18, 1
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
2, 2, 1;
6, 6, 4, 1;
19, 19, 13, 6, 1;
...
A071969
a(n) = Sum_{k=0..floor(n/3)} (binomial(n+1, k)*binomial(2*n-3*k, n-3*k)/(n+1)).
Original entry on oeis.org
1, 1, 2, 6, 19, 63, 219, 787, 2897, 10869, 41414, 159822, 623391, 2453727, 9733866, 38877318, 156206233, 630947421, 2560537092, 10435207116, 42689715279, 175243923783, 721649457417, 2980276087005, 12340456995177, 51222441676513, 213090270498764, 888321276659112
Offset: 0
-
A071969 := n->add( binomial(n+1,k)*binomial(2*n-3*k,n-3*k)/(n+1),k=0..floor(n/3));
Order:=30: g:=solve(series((H-H^2)/(1+H^3),H)=z,H): seq(coeff(g,z^n),n=1..28); # Emeric Deutsch, Dec 15 2004
-
Table[Sum[Binomial[n+1,k] Binomial[2n-3k,n-3k]/(n+1),{k,0,Floor[n/3]}],{n,0,40}] (* Harvey P. Dale, Jul 20 2022 *)
-
a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x^3)+x^2*O(x^n)),n+1))
A071943
Triangle T(n,k) (n>=0, 0 <= k <= n) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R=(1,0), V=(0,1) and D=(1,2).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 9, 1, 4, 12, 24, 31, 1, 5, 18, 46, 89, 113, 1, 6, 25, 76, 183, 342, 431, 1, 7, 33, 115, 323, 741, 1355, 1697, 1, 8, 42, 164, 520, 1376, 3054, 5492, 6847, 1, 9, 52, 224, 786, 2326, 5900, 12768, 22669, 28161, 1, 10, 63, 296, 1134, 3684, 10370
Offset: 0
T(3,2)=7 because we have RRRVV, RRVRV, RRVVR, RVRRV, RVRVR, RRD and RDR.
Array begins:
1,
1, 1,
1, 2, 3,
1, 3, 7, 9,
1, 4, 12, 24, 31,
1, 5, 18, 46, 89, 113,
1, 6, 25, 76, 183, 342, 431,
1, 7, 33, 115, 323, 741, 1355, 1697,
...
Equivalently, let U(n,k) (for n >= 0, 0 <= k <= n) be the number of walks from (0,0) to (n,k) using steps (1,1), (1,-1) and (0,-1). Then U(n,n-k) = T(n,k). The U(n,k) array begins:
4: 0 0 0 0 1 5 ...
3: 0 0 0 1 4 18 ...
2: 0 0 1 3 12 46 ...
1: 0 1 2 7 24 89 ...
0: 1 1 3 9 31 113 ...
-------------------------
k/n:0 1 2 3 4 5 ...
The recurrence for this version is: U(0,0)=1, U(n,k)=0 for k>n or k<0; U(n,k) = U(n,k+1) + U(n-1,k+1) + U(n,k-1). E.g. 46 = 18 + 4 + 24. Also U(n,0) = A052709(n-1).
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- James East, Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
- D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
- N. J. A. Sloane, Rows 0 through 100
- N. J. A. Sloane, Illustration of the initial terms of the U(n,k) array
-
U:=proc(n,k) option remember;
if (n < 0) then RETURN(0);
elif (n=0) then
if (k=0) then RETURN(1); else RETURN(0); fi;
elif (k>n or k<0) then RETURN(0);
else RETURN(U(n,k+1)+U(n-1,k+1)+U(n-1,k-1));
fi;
end;
for n from 0 to 20 do
lprint( [seq(U(n,n-i),i=0..n)] );
od:
-
t[0, 0] = 1; t[n_, k_] /; k<0 || k>n = 0; t[n_, k_] := t[n, k] = t[n, k-1] + t[n-1, k] + t[n-1, k-2]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after N. J. A. Sloane *)
Showing 1-4 of 4 results.
Comments