cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A071969 a(n) = Sum_{k=0..floor(n/3)} (binomial(n+1, k)*binomial(2*n-3*k, n-3*k)/(n+1)).

Original entry on oeis.org

1, 1, 2, 6, 19, 63, 219, 787, 2897, 10869, 41414, 159822, 623391, 2453727, 9733866, 38877318, 156206233, 630947421, 2560537092, 10435207116, 42689715279, 175243923783, 721649457417, 2980276087005, 12340456995177, 51222441676513, 213090270498764, 888321276659112
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2002

Keywords

Comments

Diagonal of A071946. - Emeric Deutsch, Dec 15 2004
Last (largest) number of each row of A071946. - David Scambler, May 15 2012

Crossrefs

Cf. A071946 is the triangle and A119254 has the row sums.

Programs

  • Maple
    A071969 := n->add( binomial(n+1,k)*binomial(2*n-3*k,n-3*k)/(n+1),k=0..floor(n/3));
    Order:=30: g:=solve(series((H-H^2)/(1+H^3),H)=z,H): seq(coeff(g,z^n),n=1..28); # Emeric Deutsch, Dec 15 2004
  • Mathematica
    Table[Sum[Binomial[n+1,k] Binomial[2n-3k,n-3k]/(n+1),{k,0,Floor[n/3]}],{n,0,40}] (* Harvey P. Dale, Jul 20 2022 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x^3)+x^2*O(x^n)),n+1))

Formula

G.f. (offset 1) is series reversion of (x-x^2)/(1+x^3).

A071946 Triangle T(n,k) read by rows giving number of underdiagonal lattice paths from (0,0) to (n,k) using only steps R = (1,0), V = (0,1) and D = (3,1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 4, 6, 6, 1, 6, 13, 19, 19, 1, 8, 23, 44, 63, 63, 1, 10, 37, 87, 156, 219, 219, 1, 12, 55, 155, 330, 568, 787, 787, 1, 14, 77, 255, 629, 1260, 2110, 2897, 2897, 1, 16, 103, 395, 1111, 2527, 4856, 7972, 10869, 10869, 1, 18, 133, 583, 1849, 4706, 10130, 18889, 30545, 41414, 41414
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2,  2;
  1, 4,  6,  6;
  1, 6, 13, 19, 19;
  ...
		

Crossrefs

Related arrays: A071943, A071944, A071945.
A108076 is the reverse, A119254 is the row sums and A071969 is the last (largest) number in each row.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
         `if`(k<0 or nAlois P. Heinz, May 05 2023
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 0 && k == 0, 1,
       If[k < 0 || n < k, 0, T[n-1, k] + T[n, k-1] + T[n-3, k-1]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jan 25 2025, after Alois P. Heinz *)

Extensions

More terms from Joshua Zucker, May 10 2006
Showing 1-2 of 2 results.