cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071944 Triangle read by rows giving numbers of paths in a lattice satisfying certain conditions.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 6, 1, 4, 9, 16, 19, 1, 5, 14, 31, 54, 63, 1, 6, 20, 52, 111, 188, 219, 1, 7, 27, 80, 197, 405, 676, 787, 1, 8, 35, 116, 320, 752, 1508, 2492, 2897, 1, 9, 44, 161, 489, 1276, 2900, 5712, 9361, 10869, 1, 10, 54, 216, 714, 2034, 5095, 11296, 21933, 35702, 41414
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Examples

			Triangle begins with:
  1;
  1,   1;
  1,   2,   2;
  1,   3,   5,   6;
  1,   4,   9,  16,  19;
  1,   5,  14,  31,  54,  63;
  1,   6,  20,  52, 111, 188, 219;
  1,   7,  27,  80, 197, 405, 676, 787;
  ...
		

Crossrefs

Diagonal entries form A071969.

Programs

  • Magma
    [[((n-k+1)/(n+1))*(&+[Binomial(n+1, j)*Binomial(n+k -3*j, n): j in [0..Floor(k/3)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 17 2019
    
  • Maple
    a := proc(n,k) if k<=n then (n-k+1)*sum(binomial(n+1,i)*binomial(n+k-3*i,n),i=0..k/3)/(n+1) else 0 fi end;
  • Mathematica
    Table[((n-k+1)/(n+1))*Sum[Binomial[n+1, j]*Binomial[n+k-3*j, n], {j, 0, k/3}], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2019 *)
  • PARI
    {T(n,k) = ((n-k+1)/(n+1))*sum(j=0, floor(k/3), binomial(n+1, j)* binomial(n+k -3*j, n))}; \\ G. C. Greubel, Mar 17 2019
    
  • Sage
    [[((n-k+1)/(n+1))*sum(binomial(n+1,j)*binomial(n+k-3*j,n) for j in (0..floor(k/3))) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 17 2019

Formula

T(n, k) = ((n-k+1)/(n+1))*Sum_{i=0..k/3} binomial(n+1, i)*binomial(n+k -3*i, n), for k <= n.

Extensions

More terms from Emeric Deutsch, Dec 19 2003