A071944 Triangle read by rows giving numbers of paths in a lattice satisfying certain conditions.
1, 1, 1, 1, 2, 2, 1, 3, 5, 6, 1, 4, 9, 16, 19, 1, 5, 14, 31, 54, 63, 1, 6, 20, 52, 111, 188, 219, 1, 7, 27, 80, 197, 405, 676, 787, 1, 8, 35, 116, 320, 752, 1508, 2492, 2897, 1, 9, 44, 161, 489, 1276, 2900, 5712, 9361, 10869, 1, 10, 54, 216, 714, 2034, 5095, 11296, 21933, 35702, 41414
Offset: 0
Examples
Triangle begins with: 1; 1, 1; 1, 2, 2; 1, 3, 5, 6; 1, 4, 9, 16, 19; 1, 5, 14, 31, 54, 63; 1, 6, 20, 52, 111, 188, 219; 1, 7, 27, 80, 197, 405, 676, 787; ...
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
Crossrefs
Diagonal entries form A071969.
Programs
-
Magma
[[((n-k+1)/(n+1))*(&+[Binomial(n+1, j)*Binomial(n+k -3*j, n): j in [0..Floor(k/3)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 17 2019
-
Maple
a := proc(n,k) if k<=n then (n-k+1)*sum(binomial(n+1,i)*binomial(n+k-3*i,n),i=0..k/3)/(n+1) else 0 fi end;
-
Mathematica
Table[((n-k+1)/(n+1))*Sum[Binomial[n+1, j]*Binomial[n+k-3*j, n], {j, 0, k/3}], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 17 2019 *)
-
PARI
{T(n,k) = ((n-k+1)/(n+1))*sum(j=0, floor(k/3), binomial(n+1, j)* binomial(n+k -3*j, n))}; \\ G. C. Greubel, Mar 17 2019
-
Sage
[[((n-k+1)/(n+1))*sum(binomial(n+1,j)*binomial(n+k-3*j,n) for j in (0..floor(k/3))) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 17 2019
Formula
T(n, k) = ((n-k+1)/(n+1))*Sum_{i=0..k/3} binomial(n+1, i)*binomial(n+k -3*i, n), for k <= n.
Extensions
More terms from Emeric Deutsch, Dec 19 2003