cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071947 Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 3, 6, 6, 3, 1, 4, 10, 15, 15, 6, 1, 5, 15, 29, 40, 36, 15, 1, 6, 21, 49, 84, 105, 91, 36, 1, 7, 28, 76, 154, 238, 280, 232, 91, 1, 8, 36, 111, 258, 468, 672, 750, 603, 232, 1, 9, 45, 155, 405, 837, 1398, 1890, 2025, 1585, 603, 1, 10, 55, 209, 605
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Examples

			Triangle begins
  1;
  1,  0;
  1,  1,  1;
  1,  2,  3,  1;
  1,  3,  6,  6,  3;
  1,  4, 10, 15, 15,  6;
		

Crossrefs

Row sums give A002426 (central trinomial coefficients). Reversal of A089942.
Cf. A027907.

Programs

  • Maple
    A071947_row := proc(n) local G, k; G := expand((1+x+x^2)^n):
    seq(coeff(G,x,k) - coeff(G,x,k-1), k=0..n) end:
    seq(print(A071947_row(n)), n=0..11); # Peter Luschny, Oct 01 2014
  • Mathematica
    A027907[n_, k_] := Sum[Binomial[n, j]*Binomial[j, k - j], {j, 0, n}]; A005043[n_] := Sum[(-1)^k*Binomial[n, k]*Binomial[k, Floor[k/2]], {k, 0, n}]; T[n_, k_] := A027907[n, k] - A027907[n, k - 1]; T[n_, n_] := A005043[n]; Table[T[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Mar 02 2017 *)

Formula

G.f.: t*(1+t*z-q)/[(1+t*z)*(2*t^2*z +t*z - 1 + q)], where q = sqrt(1 -2*t*z -3*t^2*z^2).
Sum_{k, 0<=k<=n} T(n,k)*2^(n-k) = A112657(n). - Philippe Deléham, Apr 01 2007
T(n,k) = A027907(n,k) - A027907(n,k-1). T(n,n) = A005043(n). # Peter Luschny, Oct 01 2014

Extensions

Edited by Emeric Deutsch, Mar 04 2004