A071947 Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.
1, 1, 0, 1, 1, 1, 1, 2, 3, 1, 1, 3, 6, 6, 3, 1, 4, 10, 15, 15, 6, 1, 5, 15, 29, 40, 36, 15, 1, 6, 21, 49, 84, 105, 91, 36, 1, 7, 28, 76, 154, 238, 280, 232, 91, 1, 8, 36, 111, 258, 468, 672, 750, 603, 232, 1, 9, 45, 155, 405, 837, 1398, 1890, 2025, 1585, 603, 1, 10, 55, 209, 605
Offset: 0
Examples
Triangle begins 1; 1, 0; 1, 1, 1; 1, 2, 3, 1; 1, 3, 6, 6, 3; 1, 4, 10, 15, 15, 6;
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- D. Merlini, D. G. Rogers, R. Sprugnoli and M. C. Verri, On some alternative characterizations of Riordan arrays, Canad J. Math., 49 (1997), 301-320.
Programs
-
Maple
A071947_row := proc(n) local G, k; G := expand((1+x+x^2)^n): seq(coeff(G,x,k) - coeff(G,x,k-1), k=0..n) end: seq(print(A071947_row(n)), n=0..11); # Peter Luschny, Oct 01 2014
-
Mathematica
A027907[n_, k_] := Sum[Binomial[n, j]*Binomial[j, k - j], {j, 0, n}]; A005043[n_] := Sum[(-1)^k*Binomial[n, k]*Binomial[k, Floor[k/2]], {k, 0, n}]; T[n_, k_] := A027907[n, k] - A027907[n, k - 1]; T[n_, n_] := A005043[n]; Table[T[n, k], {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Mar 02 2017 *)
Formula
G.f.: t*(1+t*z-q)/[(1+t*z)*(2*t^2*z +t*z - 1 + q)], where q = sqrt(1 -2*t*z -3*t^2*z^2).
Sum_{k, 0<=k<=n} T(n,k)*2^(n-k) = A112657(n). - Philippe Deléham, Apr 01 2007
Extensions
Edited by Emeric Deutsch, Mar 04 2004