A071969 a(n) = Sum_{k=0..floor(n/3)} (binomial(n+1, k)*binomial(2*n-3*k, n-3*k)/(n+1)).
1, 1, 2, 6, 19, 63, 219, 787, 2897, 10869, 41414, 159822, 623391, 2453727, 9733866, 38877318, 156206233, 630947421, 2560537092, 10435207116, 42689715279, 175243923783, 721649457417, 2980276087005, 12340456995177, 51222441676513, 213090270498764, 888321276659112
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- D. Merlini et al., Underdiagonal lattice paths with unrestricted steps, Discrete Appl. Math., 91 (1999), 197-213 (d_n page 209).
Crossrefs
Programs
-
Maple
A071969 := n->add( binomial(n+1,k)*binomial(2*n-3*k,n-3*k)/(n+1),k=0..floor(n/3)); Order:=30: g:=solve(series((H-H^2)/(1+H^3),H)=z,H): seq(coeff(g,z^n),n=1..28); # Emeric Deutsch, Dec 15 2004
-
Mathematica
Table[Sum[Binomial[n+1,k] Binomial[2n-3k,n-3k]/(n+1),{k,0,Floor[n/3]}],{n,0,40}] (* Harvey P. Dale, Jul 20 2022 *)
-
PARI
a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x^3)+x^2*O(x^n)),n+1))
Formula
G.f. (offset 1) is series reversion of (x-x^2)/(1+x^3).
Comments