cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071969 a(n) = Sum_{k=0..floor(n/3)} (binomial(n+1, k)*binomial(2*n-3*k, n-3*k)/(n+1)).

Original entry on oeis.org

1, 1, 2, 6, 19, 63, 219, 787, 2897, 10869, 41414, 159822, 623391, 2453727, 9733866, 38877318, 156206233, 630947421, 2560537092, 10435207116, 42689715279, 175243923783, 721649457417, 2980276087005, 12340456995177, 51222441676513, 213090270498764, 888321276659112
Offset: 0

Views

Author

N. J. A. Sloane, Jun 17 2002

Keywords

Comments

Diagonal of A071946. - Emeric Deutsch, Dec 15 2004
Last (largest) number of each row of A071946. - David Scambler, May 15 2012

Crossrefs

Cf. A071946 is the triangle and A119254 has the row sums.

Programs

  • Maple
    A071969 := n->add( binomial(n+1,k)*binomial(2*n-3*k,n-3*k)/(n+1),k=0..floor(n/3));
    Order:=30: g:=solve(series((H-H^2)/(1+H^3),H)=z,H): seq(coeff(g,z^n),n=1..28); # Emeric Deutsch, Dec 15 2004
  • Mathematica
    Table[Sum[Binomial[n+1,k] Binomial[2n-3k,n-3k]/(n+1),{k,0,Floor[n/3]}],{n,0,40}] (* Harvey P. Dale, Jul 20 2022 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x^3)+x^2*O(x^n)),n+1))

Formula

G.f. (offset 1) is series reversion of (x-x^2)/(1+x^3).