A071970 List the positive rationals in the order in which they are produced by the Stern sequence A002487 and apply the Sagher map to turn them into integers.
1, 2, 4, 3, 18, 12, 9, 8, 48, 45, 50, 20, 75, 72, 16, 5, 200, 112, 147, 288, 320, 175, 98, 28, 245, 800, 192, 63, 392, 80, 25, 6, 180, 675, 648, 176, 847, 490, 300, 99, 3872, 832, 845, 600, 1008, 1323, 162, 108, 567, 1176, 720, 325, 5408, 704, 363, 90, 700, 539
Offset: 1
Examples
The first few rationals and their images are 1/1 -> 1, 1/2 -> 2, 2/1 -> 4, 1/3 -> 3, 3/2 -> 18, 2/3 -> 12, 3/1 -> 9, 1/4 -> 8, ...
Links
- Y. Sagher, Counting the rationals, Amer. Math. Monthly, 96 (1989), p. 823.
Programs
-
Mathematica
nmax = 58; s[0] = 0; s[1] = 1; s[n_?EvenQ] := s[n/2]; s[n_] := s[(n-1)/2] + s[(n+1)/2]; v = Table[ FactorInteger /@ {s[n] , s[n+1]}, {n, 1, nmax}]; a[n_] := Times @@ (#[[1]]^(2*#[[2]])&) /@ v[[n, 1]]*Times @@ (#[[1]]^(2*#[[2]]-1)&) /@ v[[n, 2]]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Nov 25 2011, after Pari *)
-
PARI
s(n)=if(n<2,n>0,if(n%2,s((n+1)/2)+s((n-1)/2),s(n/2))) /* A002487(n) */
-
PARI
a(n)=local(v); if(n,v=factor(s(n)/s(n+1))~; prod(k=1,length(v),v[1,k]^if(v[2,k]<0,-1-2*v[2,k],2*v[2,k])),0)
Extensions
More terms from Michael Somos, Jul 19 2002
Comments