A072021 Smallest solution to gcd(x, reverse(x)) = 5^n.
5, 5200, 521000, 5213750, 521875, 5218750, 52130234375, 5734841796875, 57869714843750, 526046650390625, 5265674365234375, 52187008544921875, 526515306396484375, 5213023309008789062500, 5213596736358642578125, 5260466086273193359375, 526041911745452880859375
Offset: 1
Examples
For n = 4, gcd(521875, 578125) = 3125 = 5^4. For n = 8, a(8) = 5734841796875 = 5^9*2936239, reverse(a(8)) = 5786971484375 = 5^8*71*208657.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..25
Programs
-
PARI
a(n) = {my(k = 1); while (gcd(k, fromdigits(Vecrev(digits(k)))) != 5^n, k++); k;} \\ Michel Marcus, Jul 13 2018
Formula
a(n) = A069554(5^n).
Extensions
a(9)-a(18) from Hiroaki Yamanouchi, Sep 10 2014