A072022 Smallest x such that the number of nonprimes (i.e., 1 and composites) in the reduced residue set (RSS(x)) of x equals n, or 0 if there are no such x.
1, 5, 7, 15, 26, 11, 13, 38, 102, 17, 19, 25, 0, 23, 35, 144, 74, 198, 29, 31, 75, 57, 104, 94, 37, 55, 69, 41, 43, 118, 0, 47, 81, 128, 87, 134, 53, 93, 480, 146, 77, 59, 61, 117, 111, 166, 172, 67, 250, 91, 71, 73, 350, 194, 129, 202, 79, 206, 212, 83, 214, 153, 218
Offset: 1
Keywords
Examples
n = 15: RRS(15) = {1,2,4,7,8,11,13,14} of which nonprimes = cRRS(15) = {1,4,8,14}, i.e., 4 terms; 15 is the smallest such number, so a(4) = 15. a(m) = 0 for m = {13, 31, 70, 119, 189, 210, 235, 236}.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
- Abhijit A J, A. Satyanarayana Reddy, Number of non-primes in the set of units modulo n, arXiv:1907.09908 [math.GM], 2019.
Programs
-
Mathematica
f[x_] := EulerPhi[x]-PrimePi[x]+Length[FactorInteger[x]] t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]]==0, t[[s]]=n], {n, 3, 1000000}]; t (* Second program: *) With[{s = Table[Count[Range[n - 1], k_ /; And[CoprimeQ[k, n], ! PrimeQ@ k]], {n, 10^3}]}, Function[{t, u}, Take[#, 63] &@ Join[{1}, Rest@ ReplacePart[t, Map[# -> Lookup[u, #][[1]] &, Rest@ Keys@ u]]]] @@ {ConstantArray[0, Max@ s], KeySort@ PositionIndex@ s}] (* Michael De Vlieger, Jul 30 2017 *)
-
PARI
f(n) = eulerphi(n) - (primepi(n) - omega(n)); \\ A048864 a(n) = {my(k=1); while (f(k) != n, k++); k;} \\ Michel Marcus, Aug 07 2019
Formula
a(n) = min{x; A048864(x)=n}; a(n)=0 if no such number exists.
Comments