cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072022 Smallest x such that the number of nonprimes (i.e., 1 and composites) in the reduced residue set (RSS(x)) of x equals n, or 0 if there are no such x.

Original entry on oeis.org

1, 5, 7, 15, 26, 11, 13, 38, 102, 17, 19, 25, 0, 23, 35, 144, 74, 198, 29, 31, 75, 57, 104, 94, 37, 55, 69, 41, 43, 118, 0, 47, 81, 128, 87, 134, 53, 93, 480, 146, 77, 59, 61, 117, 111, 166, 172, 67, 250, 91, 71, 73, 350, 194, 129, 202, 79, 206, 212, 83, 214, 153, 218
Offset: 1

Views

Author

Labos Elemer, Jun 06 2002

Keywords

Comments

See A074915 for a bound on A048864(x) which allows the establishment of a search range for a(n). - Giovanni Resta, Feb 25 2020

Examples

			n = 15: RRS(15) = {1,2,4,7,8,11,13,14} of which nonprimes = cRRS(15) = {1,4,8,14}, i.e., 4 terms; 15 is the smallest such number, so a(4) = 15. a(m) = 0 for m = {13, 31, 70, 119, 189, 210, 235, 236}.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[x]-PrimePi[x]+Length[FactorInteger[x]] t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]]==0, t[[s]]=n], {n, 3, 1000000}]; t
    (* Second program: *)
    With[{s = Table[Count[Range[n - 1], k_ /; And[CoprimeQ[k, n], ! PrimeQ@ k]], {n, 10^3}]}, Function[{t, u}, Take[#, 63] &@ Join[{1}, Rest@ ReplacePart[t, Map[# -> Lookup[u, #][[1]] &, Rest@ Keys@ u]]]] @@ {ConstantArray[0, Max@ s], KeySort@ PositionIndex@ s}] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    f(n) = eulerphi(n) - (primepi(n) - omega(n)); \\ A048864
    a(n) = {my(k=1); while (f(k) != n, k++); k;} \\ Michel Marcus, Aug 07 2019

Formula

a(n) = min{x; A048864(x)=n}; a(n)=0 if no such number exists.