A072026 Swap twin prime pairs >(3,5) in prime factorization of n.
1, 2, 3, 4, 7, 6, 5, 8, 9, 14, 13, 12, 11, 10, 21, 16, 19, 18, 17, 28, 15, 26, 23, 24, 49, 22, 27, 20, 31, 42, 29, 32, 39, 38, 35, 36, 37, 34, 33, 56, 43, 30, 41, 52, 63, 46, 47, 48, 25, 98, 57, 44, 53, 54, 91, 40, 51, 62, 61, 84, 59, 58, 45, 64, 77, 78
Offset: 1
Examples
a(143)=a(11*13)=a(11)*a(13)=13*11=143; a(77)=a(7*11)=a(7)*a(11)=5*13=65.
Links
Programs
-
Mathematica
a[n_] := Product[{p, e} = pe; If[p <= 3, p, If[PrimeQ[p+2], p+2, If[PrimeQ[p-2], p-2, p]]]^e, {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, Nov 20 2021 *)
Formula
a(a(n)) = n, a self-inverse permutation of natural numbers.
Multiplicative with a(p) = (if p<=3 then p else (if p+2 is prime then p+2 else (if p-2 is prime then p-2 else p))), p prime.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p, q primes > 3, p = q+2} ((p^2-p)*(q^2-q)/((p^2-q)*(q^2-p))) = 0.53439004468579249988... . - Amiram Eldar, Dec 24 2022