cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072028 Swap twin prime pairs of form (4*k+1,4*k+3) in prime factorization of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 6, 5, 8, 9, 14, 11, 12, 13, 10, 21, 16, 19, 18, 17, 28, 15, 22, 23, 24, 49, 26, 27, 20, 31, 42, 29, 32, 33, 38, 35, 36, 37, 34, 39, 56, 43, 30, 41, 44, 63, 46, 47, 48, 25, 98, 57, 52, 53, 54, 77, 40, 51, 62, 59, 84, 61, 58, 45, 64, 91, 66
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 07 2002

Keywords

Examples

			a(65) = a(5*13) = a(5)*a(13) = a(4*1+1)*a(13) = (4*1+3)*13 = 7*13 = 91.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p < 5, p, If[(m = Mod[p, 4]) == 1 && PrimeQ[p + 2], p + 2, If[m == 3 && PrimeQ[p - 2], p - 2, p]]]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 26 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; if(p < 5, p, if(p%4 == 1 && isprime(p+2), p+2, if(p%4 == 3 && isprime(p-2), p-2, p)))^f[i,2]);} \\ Amiram Eldar, Feb 26 2024

Formula

Multiplicative with a(p) = (if p mod 4 = 1 and p+2 is prime then p+2 else (if p mod 4 = 3 and p-2 is prime then p-2 else p)), p prime.
a(a(n)) = n, a self-inverse permutation of natural numbers.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{(p < q) swapped pair} ((p^2-p)*(q^2-q)/((p^2-q)*(q^2-p))) = 1.0627249749498993391... . - Amiram Eldar, Feb 26 2024