A072029 Swap twin prime pairs of form (4*k+3,4*(k+1)+1) in prime factorization of n.
1, 2, 5, 4, 3, 10, 7, 8, 25, 6, 13, 20, 11, 14, 15, 16, 17, 50, 19, 12, 35, 26, 23, 40, 9, 22, 125, 28, 29, 30, 31, 32, 65, 34, 21, 100, 37, 38, 55, 24, 41, 70, 43, 52, 75, 46, 47, 80, 49, 18, 85, 44, 53, 250, 39, 56, 95, 58, 61, 60, 59, 62, 175, 64, 33
Offset: 1
Examples
a(42) = a(2*3*7) = a(2)*a(3)*a(7) = a(2)*a(4*0+3)*a(7) = 2*(4*1+1)*7 = 2*5*7 = 70.
Links
Programs
-
Mathematica
a[n_] := Product[{p, e} = pe; Which[ Mod[p, 4] == 3 && PrimeQ[p + 2], p + 2, Mod[p, 4] == 1 && PrimeQ[p - 2], p - 2, True, p]^e, {pe, FactorInteger[n]}]; Array[a, 100] (* Jean-François Alcover, Nov 21 2021 *)
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; if(p == 2, p, if(p%4 == 3 && isprime(p+2), p+2, if(p%4 == 1 && isprime(p-2), p-2, p)))^f[i,2]);} \\ Amiram Eldar, Feb 26 2024
Formula
Multiplicative with a(p) = (if p mod 4 = 3 and p+2 is prime then p+2 else (if p mod 4 = 1 and p-2 is prime then p-2 else p)), p prime.
a(a(n))=n, a self-inverse permutation of natural numbers.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{(p < q) swapped pair} ((p^2-p)*(q^2-q)/((p^2-q)*(q^2-p))) = 1.37140598833326962... . - Amiram Eldar, Feb 26 2024