cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072040 Numbers n of the form k + reverse(k) for exactly two k.

Original entry on oeis.org

22, 187, 202, 222, 242, 262, 282, 302, 322, 342, 362, 382, 1717, 1737, 1757, 1777, 1797, 1817, 1837, 1857, 1877, 1897, 2002, 2871, 3982, 11211, 11411, 11611, 11811, 12011, 12211, 12411, 12611, 12811, 17017, 18128, 18997, 19888, 20002, 20202
Offset: 1

Views

Author

Klaus Brockhaus, Jun 08 2002

Keywords

Comments

In the cognate sequence A071265 two numbers a and b are counted only once, if n = a + b, a = reverse(b), b = reverse(a). Therefore 187 = 89 + 98 = 98 + 89 does not appear in A071265.

Examples

			22 = 11 + 11 = 20 + 02, 187 = 89 + 98 = 98 + 89, 382 = 191 + 191 = 290 + 092.
		

Crossrefs

Programs

  • Maple
    # Maple program from N. J. A. Sloane, Mar 07 2016. Assumes digrev (from the "transforms" file) is available:
    M:=21000; b := Array(1..M,0);
    for n from 1 to M do
    t1:=n+digrev(n);
    if t1 <= M then b[t1]:=b[t1]+1; fi;
    od:
    ans:=[];
    for n from 1 to M do
    if b[n]=2 then ans:=[op(ans),n]; fi; od:
    ans;
  • Mathematica
    M = 10^5; digrev[n_] := IntegerDigits[n] // Reverse // FromDigits; Clear[b]; b[A072040%20=%20Reap%5BFor%5Bn%20=%201,%20n%20%3C=%20M,%20n++,%20If%5Bb%5Bn%5D%20==%202,%20Sow%5Bn%5D%5D%5D%5D%5B%5B2,%201%5D%5D%20(*%20_Jean-Fran%C3%A7ois%20Alcover">] = 0; For[n = 1, n <= M, n++, t1 = n + digrev[n]; If[t1 <= M, b[t1] = b[t1] + 1]]; A072040 = Reap[For[n = 1, n <= M, n++, If[b[n] == 2, Sow[n]]]][[2, 1]] (* _Jean-François Alcover, Oct 01 2016, after N. J. A. Sloane's Maple code *)