A072040 Numbers n of the form k + reverse(k) for exactly two k.
22, 187, 202, 222, 242, 262, 282, 302, 322, 342, 362, 382, 1717, 1737, 1757, 1777, 1797, 1817, 1837, 1857, 1877, 1897, 2002, 2871, 3982, 11211, 11411, 11611, 11811, 12011, 12211, 12411, 12611, 12811, 17017, 18128, 18997, 19888, 20002, 20202
Offset: 1
Examples
22 = 11 + 11 = 20 + 02, 187 = 89 + 98 = 98 + 89, 382 = 191 + 191 = 290 + 092.
Programs
-
Maple
# Maple program from N. J. A. Sloane, Mar 07 2016. Assumes digrev (from the "transforms" file) is available: M:=21000; b := Array(1..M,0); for n from 1 to M do t1:=n+digrev(n); if t1 <= M then b[t1]:=b[t1]+1; fi; od: ans:=[]; for n from 1 to M do if b[n]=2 then ans:=[op(ans),n]; fi; od: ans;
-
Mathematica
M = 10^5; digrev[n_] := IntegerDigits[n] // Reverse // FromDigits; Clear[b]; b[A072040%20=%20Reap%5BFor%5Bn%20=%201,%20n%20%3C=%20M,%20n++,%20If%5Bb%5Bn%5D%20==%202,%20Sow%5Bn%5D%5D%5D%5D%5B%5B2,%201%5D%5D%20(*%20_Jean-Fran%C3%A7ois%20Alcover">] = 0; For[n = 1, n <= M, n++, t1 = n + digrev[n]; If[t1 <= M, b[t1] = b[t1] + 1]]; A072040 = Reap[For[n = 1, n <= M, n++, If[b[n] == 2, Sow[n]]]][[2, 1]] (* _Jean-François Alcover, Oct 01 2016, after N. J. A. Sloane's Maple code *)
Comments