cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072046 Greatest common divisor of product of divisors of n and product of non-divisors < n.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 2, 3, 4, 1, 144, 1, 4, 45, 32, 1, 72, 1, 320, 63, 4, 1, 82944, 125, 4, 729, 448, 1, 162000, 1, 32768, 99, 4, 1225, 3359232, 1, 4, 117, 2560000, 1, 63504, 1, 704, 91125, 4, 1, 254803968, 343, 125000, 153, 832, 1, 8503056, 3025, 9834496, 171, 4, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 29 2002

Keywords

Examples

			a(12) = GCD(A007955(12), A055067(12)) = GCD(1*2*3*4*6*12,5*7*8*9*10*11) = GCD(1728,277200) = 144;
a(13) = GCD(A007955(13), A055067(13)) = GCD(1*13,2*3*4*5*6*7*8*9*10*11*12) = GCD(13,479001600) = 1.
		

Crossrefs

Programs

  • Haskell
    a072046 n = gcd (a007955 n) (a055067 n)
    -- Reinhard Zumkeller, Feb 06 2012
    
  • Mathematica
    a[n_] := (dd = Divisors[n]; GCD[Times @@ dd, Times @@ Complement[Range[n], dd]]); Array[a, 59]
    a[n_] := GCD[(p = n^(DivisorSigma[0, n]/2)), n!/p]; Array[a, 60] (* Amiram Eldar, Jun 26 2022 *)
  • Python
    from math import isqrt, gcd, factorial
    from sympy import divisor_count
    def A072046(n): return gcd(p:=isqrt(n)**c if (c:=divisor_count(n)) & 1 else n**(c//2),factorial(n)//p) # Chai Wah Wu, Jun 25 2022

Formula

a(n) = GCD(A007955(n), A055067(n)).