cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072102 Decimal expansion of sum of reciprocal perfect powers (excluding 1).

Original entry on oeis.org

8, 7, 4, 4, 6, 4, 3, 6, 8, 4, 0, 4, 9, 4, 4, 8, 6, 6, 6, 9, 4, 3, 5, 1, 3, 2, 0, 5, 9, 7, 3, 7, 3, 1, 6, 5, 9, 3, 5, 3, 3, 8, 4, 3, 1, 9, 2, 4, 2, 1, 4, 5, 7, 7, 6, 2, 5, 7, 8, 8, 2, 5, 3, 5, 0, 9, 3, 7, 0, 0, 6, 4, 1, 2, 9, 7, 2, 3, 6, 7, 6, 5, 9, 9, 3, 3, 2, 2, 6, 1, 7, 8, 5, 7, 5, 8, 0, 1, 6, 2, 8, 7, 7, 0, 6, 3, 4, 1, 9, 3, 6, 2, 5, 5, 9, 0, 5, 3, 0, 1
Offset: 0

Views

Author

Eric W. Weisstein, Jun 18 2002

Keywords

Examples

			0.874464368404944866694351320597373165935338431924214...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 113.

Crossrefs

Cf. A001597.

Programs

  • Mathematica
    RealDigits[Total[Block[{$MaxExtraPrecision = 10^3}, N[#, 120] & /@ Table[MoebiusMu[k] (1 - Zeta[k]), {k, 2, 10^3}]]]][[1]]
  • PARI
    cons()=my(bp=bitprecision(1.),s=0.); forsquarefree(k=2,bp,s+=moebius(k)*(1-zeta(k[1]))); s \\ Charles R Greathouse IV, Feb 08 2023

Formula

From Amiram Eldar, Aug 20 2020: (Start)
Equals Sum_{k>=2} 1/A001597(k).
Equals Sum_{k>=2} mu(k)*(1-zeta(k)). (End)

Extensions

Corrected by Eric W. Weisstein, May 06 2013