A072102 Decimal expansion of sum of reciprocal perfect powers (excluding 1).
8, 7, 4, 4, 6, 4, 3, 6, 8, 4, 0, 4, 9, 4, 4, 8, 6, 6, 6, 9, 4, 3, 5, 1, 3, 2, 0, 5, 9, 7, 3, 7, 3, 1, 6, 5, 9, 3, 5, 3, 3, 8, 4, 3, 1, 9, 2, 4, 2, 1, 4, 5, 7, 7, 6, 2, 5, 7, 8, 8, 2, 5, 3, 5, 0, 9, 3, 7, 0, 0, 6, 4, 1, 2, 9, 7, 2, 3, 6, 7, 6, 5, 9, 9, 3, 3, 2, 2, 6, 1, 7, 8, 5, 7, 5, 8, 0, 1, 6, 2, 8, 7, 7, 0, 6, 3, 4, 1, 9, 3, 6, 2, 5, 5, 9, 0, 5, 3, 0, 1
Offset: 0
Examples
0.874464368404944866694351320597373165935338431924214...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 113.
Links
- Eric Weisstein's World of Mathematics, Perfect Power.
Crossrefs
Cf. A001597.
Programs
-
Mathematica
RealDigits[Total[Block[{$MaxExtraPrecision = 10^3}, N[#, 120] & /@ Table[MoebiusMu[k] (1 - Zeta[k]), {k, 2, 10^3}]]]][[1]]
-
PARI
cons()=my(bp=bitprecision(1.),s=0.); forsquarefree(k=2,bp,s+=moebius(k)*(1-zeta(k[1]))); s \\ Charles R Greathouse IV, Feb 08 2023
Formula
From Amiram Eldar, Aug 20 2020: (Start)
Equals Sum_{k>=2} 1/A001597(k).
Equals Sum_{k>=2} mu(k)*(1-zeta(k)). (End)
Extensions
Corrected by Eric W. Weisstein, May 06 2013