cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A072112 Decimal expansion of Hall and Tenenbaum constant.

Original entry on oeis.org

3, 2, 8, 6, 7, 4, 1, 6, 2, 9, 0, 8, 5, 4, 6, 2, 1, 6, 8, 1, 8, 2, 8, 4, 5, 1, 4, 0, 4, 3, 1, 1, 5, 1, 1, 8, 9, 7, 6, 9, 4, 1, 5, 4, 7, 6, 5, 5, 7, 8, 1, 9, 0, 9, 6, 1, 5, 5, 1, 3, 3, 2, 3, 9, 0, 9, 5, 7, 0, 5, 1, 5, 9, 6, 9, 6, 5, 7, 1, 2, 5, 5, 0, 2, 2, 1, 8, 2, 2, 6, 1, 8, 9, 1, 5, 6, 8, 8, 9, 3, 1, 9, 1, 8
Offset: 0

Views

Author

Benoit Cloitre, Jun 19 2002

Keywords

Comments

For any multiplicative function g with values -1<= g(k) <= 1, for any real x >=2, Sum( i<= x, g(i) ) << x * exp{ -K * Sum( p<=x, (1-g(p))/p ) } and K is the optimal constant satisfying this inequality (Hall and Tenenbaum, 1991).
Named after the British mathematician Richard Roxby Hall and the French mathematician Gérald Tenenbaum (b. 1952). - Amiram Eldar, Jun 22 2021

Examples

			0.32867416290854621681828451404311511897694154765578...
		

References

  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 348, Publications de l'Institut Cartan, 1990.

Crossrefs

Cf. A072113.

Programs

  • Mathematica
    digits = 104; x /. FindRoot[Pi*x + Sqrt[1 - x^2] - x*ArcCos[x] == Pi/2, {x, 0}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013 *)
  • PARI
    \p 200;
    cos(solve(X=0,2*Pi,sin(X)+(Pi-X)*cos(X)-Pi/2))

Formula

K = cos(S) = 0.3286... where S is the root 0 < S < 2*Pi of sin(S)+(Pi-S)*cos(S) = Pi/2.
Showing 1-1 of 1 results.