A072112 Decimal expansion of Hall and Tenenbaum constant.
3, 2, 8, 6, 7, 4, 1, 6, 2, 9, 0, 8, 5, 4, 6, 2, 1, 6, 8, 1, 8, 2, 8, 4, 5, 1, 4, 0, 4, 3, 1, 1, 5, 1, 1, 8, 9, 7, 6, 9, 4, 1, 5, 4, 7, 6, 5, 5, 7, 8, 1, 9, 0, 9, 6, 1, 5, 5, 1, 3, 3, 2, 3, 9, 0, 9, 5, 7, 0, 5, 1, 5, 9, 6, 9, 6, 5, 7, 1, 2, 5, 5, 0, 2, 2, 1, 8, 2, 2, 6, 1, 8, 9, 1, 5, 6, 8, 8, 9, 3, 1, 9, 1, 8
Offset: 0
Examples
0.32867416290854621681828451404311511897694154765578...
References
- G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 348, Publications de l'Institut Cartan, 1990.
Links
- R. R. Hall and G. Tenenbaum, Effective mean value estimates for complex multiplicative functions, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 110, No. 2 (1991), pp. 337-351.
Crossrefs
Cf. A072113.
Programs
-
Mathematica
digits = 104; x /. FindRoot[Pi*x + Sqrt[1 - x^2] - x*ArcCos[x] == Pi/2, {x, 0}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013 *)
-
PARI
\p 200; cos(solve(X=0,2*Pi,sin(X)+(Pi-X)*cos(X)-Pi/2))
Formula
K = cos(S) = 0.3286... where S is the root 0 < S < 2*Pi of sin(S)+(Pi-S)*cos(S) = Pi/2.
Comments