cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072130 a(n+1) - 3*a(n) + a(n-1) = (2/3)*(1+w^(n+1)+w^(2*n+2)); a(1) = 0, a(2) = 1; where w is the cubic root of unity.

Original entry on oeis.org

0, 1, 5, 14, 37, 99, 260, 681, 1785, 4674, 12237, 32039, 83880, 219601, 574925, 1505174, 3940597, 10316619, 27009260, 70711161, 185124225, 484661514, 1268860317, 3321919439, 8696898000, 22768774561, 59609425685, 156059502494
Offset: 1

Views

Author

Robert G. Wilson v, Jun 24 2002

Keywords

Comments

w = exp(2*Pi*I/3) = (-1-sqrt(-3))/2.
The sequence (2/3)*(1+w^(n+1)+w^(2*n+2)) is "Period 3: repeat [0,2,0]."

Crossrefs

Cf. A071618.

Programs

  • Mathematica
    a[1] = 0; a[2] = 1; w = Exp[2Pi*I/3]; a[n_] := (2/3)(1 + w^n + w^(2n)) + 3a[n - 1] - a[n - 2]; Table[ Simplify[ a[n]], {n, 1, 28}]
    LinearRecurrence[{3,-1,1,-3,1},{0,1,5,14,37},30] (* Harvey P. Dale, Aug 19 2012 *)

Formula

G.f.: x^2*(1+x)*(1+x-x^2)/((1-x)*(1-3*x+x^2)*(1+x+x^2)). - Colin Barker, Jan 14 2012
a(n) = 3*a(n-1)- a(n-2)+ a(n-3)-3*a(n-4)+a(n-5). - Harvey P. Dale, Aug 19 2012