A072130 a(n+1) - 3*a(n) + a(n-1) = (2/3)*(1+w^(n+1)+w^(2*n+2)); a(1) = 0, a(2) = 1; where w is the cubic root of unity.
0, 1, 5, 14, 37, 99, 260, 681, 1785, 4674, 12237, 32039, 83880, 219601, 574925, 1505174, 3940597, 10316619, 27009260, 70711161, 185124225, 484661514, 1268860317, 3321919439, 8696898000, 22768774561, 59609425685, 156059502494
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-1,1,-3,1).
Crossrefs
Cf. A071618.
Programs
-
Mathematica
a[1] = 0; a[2] = 1; w = Exp[2Pi*I/3]; a[n_] := (2/3)(1 + w^n + w^(2n)) + 3a[n - 1] - a[n - 2]; Table[ Simplify[ a[n]], {n, 1, 28}] LinearRecurrence[{3,-1,1,-3,1},{0,1,5,14,37},30] (* Harvey P. Dale, Aug 19 2012 *)
Formula
G.f.: x^2*(1+x)*(1+x-x^2)/((1-x)*(1-3*x+x^2)*(1+x+x^2)). - Colin Barker, Jan 14 2012
a(n) = 3*a(n-1)- a(n-2)+ a(n-3)-3*a(n-4)+a(n-5). - Harvey P. Dale, Aug 19 2012
Comments