A072233 Square array T(n,k) read by antidiagonals giving number of ways to distribute n indistinguishable objects in k indistinguishable containers; containers may be left empty.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 0, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 0
Examples
Table begins (upper left corner = T(0,0)): 1 1 1 1 1 1 1 1 1 ... 0 1 1 1 1 1 1 1 1 ... 0 1 2 2 2 2 2 2 2 ... 0 1 2 3 3 3 3 3 3 ... 0 1 3 4 5 5 5 5 5 ... 0 1 3 5 6 7 7 7 7 ... 0 1 4 7 9 10 11 11 11 ... 0 1 4 8 11 13 14 15 15 ... 0 1 5 10 15 18 20 21 22 ... There is 1 way to distribute 0 objects into k containers: T(0, k) = 1. The different ways for n=4, k=3 are: (oooo)()(), (ooo)(o)(), (oo)(oo)(), (oo)(o)(o), so T(4, 3) = 4. From _Wolfdieter Lang_, Dec 03 2012 (Start) The triangle a(n,k) = T(n-k,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 00 1 01 0 1 02 0 1 1 03 0 1 1 1 04 0 1 2 1 1 05 0 1 2 2 1 1 06 0 1 3 3 2 1 1 07 0 1 3 4 3 2 1 1 08 0 1 4 5 5 3 2 1 1 09 0 1 4 7 6 5 3 2 1 1 10 0 1 5 8 9 7 5 3 2 1 1 ... Row n=5 is, for k=1..5, [1,2,2,1,1] which gives the number of partitions of n=5 with k parts. See A008284 and the Franklin T. Adams-Watters comment above. (End) From _Gus Wiseman_, Feb 10 2021: (Start) Row n = 9 counts the following partitions: 9 54 333 3222 22221 222111 2211111 21111111 111111111 63 432 3321 32211 321111 3111111 72 441 4221 33111 411111 81 522 4311 42111 531 5211 51111 621 6111 711 (End)
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..10010
- Combinatorial Object Server, Information on Numerical Partitions
- FindStat - Combinatorial Statistic Finder, The length of the partition.
Crossrefs
Programs
-
Mathematica
Flatten[Table[Length[IntegerPartitions[n, {k}]], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, Feb 24 2014 *)
-
Sage
from sage.combinat.partition import number_of_partitions_length [[number_of_partitions_length(n, k) for k in (0..n)] for n in (0..10)] # Peter Luschny, Aug 01 2015
Formula
T(0, k) = 1, T(n, 0) = 0 (n>0), T(1, k) = 1 (k>0), T(n, 1) = 1 (n>0), T(n, k) = 0 for n < 0, T(n, k) = Sum[ T(n-k+i, k-i), i=0...k-1] Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k>n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. Product_{j=0..infinity} 1/(1-xy^j). Regarded as a triangular array, g.f. Product_{j=1..infinity} 1/(1-xy^j). - Franklin T. Adams-Watters, Dec 18 2006
O.g.f. of column No. k of the triangle a(n,k) is x^k/product(1-x^j,j=1..k), k>=0 (the undefined product for k=0 is put to 1). - Wolfdieter Lang, Dec 03 2012
Extensions
Corrected by Franklin T. Adams-Watters, Dec 18 2006
Comments