A072280 Product representation of the Pell numbers A000129 and A002203.
2, 1, 7, 6, 41, 5, 239, 34, 199, 29, 8119, 33, 47321, 169, 961, 1154, 1607521, 197, 9369319, 1121, 32641, 5741, 318281039, 1153, 45245801, 33461, 7761799, 38081, 63018038201, 1345, 367296043199, 1331714, 37667521, 1136689, 1273319041, 39201, 72722761475561
Offset: 1
Keywords
Examples
For even n=12, A000129(12) = a(1)*a(2)*a(3)*a(4)*a(6)*a(12) = 2*1*7*6*5*33 = 13860. For odd n=9, A000129(9) = a(2)*a(6)*a(18)= 1*5*197 = 985. For even n=8, A002203(12) = a(8)*a(24)=34*1153 = 39202. For odd n=21, A002203(21) = a(1)*a(3)*a(7)*a(21) = 2*7*239*32641 = 109216786.
Links
- Dan Kalman and Robert Mena, The Fibonacci Numbers: Exposed, Math. Mag. 76 (3) (2003) 167-181.
- Index to sequences related to cyclotomic polynomials.
Programs
-
Maple
A072280 := proc(n) if n <= 2 then 3-n ; else g := numtheory[phi](n) ; h := 1+sqrt(2) ; (h-2)^g*numtheory[cyclotomic](n,h^2) ; simplify(expand(%)) ; end if; end proc: seq(A072280(n),n=1..80) ; # R. J. Mathar, Nov 27 2009
-
Mathematica
a[n_] := If[n <= 2, 3-n, g = EulerPhi[n]; h = 1 + Sqrt[2]; (h - 2)^g*Cyclotomic[n, h^2] // Expand]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, May 08 2023, after R. J. Mathar *)
Extensions
Edited and extended by R. J. Mathar, Nov 27 2009
Comments