A072286 Denominators of inverse unimodal analog of binomial coefficients: binomial(n,m) = Sum_{k=0..n-m} a(2*k+m-1, 2*k).
1, 1, 1, 1, 2, 1, 1, 8, 1, 1, 1, 16, 1, 2, 1, 1, 128, 1, 8, 1, 1, 1, 256, 1, 16, 1, 2, 1, 1, 1024, 1, 128, 1, 8, 1, 1, 1, 2048, 1, 256, 1, 16, 1, 2, 1, 1, 32768, 1, 1024, 1, 128, 1, 8, 1, 1, 1, 65536, 1, 2048, 1, 256, 1, 16, 1, 2, 1, 1, 262144, 1, 32768, 1, 1024, 1, 128, 1, 8, 1, 1
Offset: 0
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Mathematica
a[n_, m_]:= Binomial[n -m/2 +1, n-m+1] - Binomial[n -m/2, n-m+1]; Flatten[Table[Denominator[a[n, m]], {n, 0, 11}, {m, 0, n}]]
-
PARI
a(n,m) = binomial(n-m/2, n-m); for(n=0,11, for(m=0,n, print1(denominator(a(n,m)), ", "))) \\ G. C. Greubel, Aug 26 2019
-
Sage
[[denominator( binomial(n-m/2, n-m) ) for m in (0..n)] for n in (0..11)] # G. C. Greubel, Aug 26 2019
Formula
a(n, m) = binomial(n-m/2+1, n-m+1) - binomial(n-m/2, n-m+1).
Comments