A072325 Number of even numbers that cannot be expressed as the difference p-q of two odd primes q < p <= prime(n).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 2, 2, 2, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 2, 2, 2, 1, 1, 0, 0
Offset: 2
Examples
a(25)=1 because Prime[25]=97 and there is 1 even number, 88, that cannot be written as the difference of two odd primes less than or equal to 97.
Links
- Eric Weisstein's World of Mathematics, Cluster Primes
Programs
-
Mathematica
m=10000; n=PrimePi[m]-1; p=Table[Prime[i+1], {i, n}]; d=Table[0, {m/2}]; c=Table[0, {n}]; For[i=2, i<=n, i++, For[j=1, j
Comments