cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072337 Inverse EULER transform of A064831 (with its initial 1 omitted).

Original entry on oeis.org

1, 3, 3, 5, 10, 24, 50, 120, 270, 640, 1500, 3600, 8610, 20880, 50700, 124024, 304290, 750120, 1854400, 4600200, 11440548, 28527320, 71289000, 178526880, 447910470, 1125750120, 2833885800, 7144449920, 18036373140, 45591631800, 115381697740, 292329067800
Offset: 0

Views

Author

N. J. A. Sloane, Jul 16 2002

Keywords

Comments

Also, dimensions of the graded Yang-Mills algebra ym(3) [Herscovich and Solotar]. - N. J. A. Sloane, Jan 02 2013
Apparently the same as A032170 for n > 2. - Ralf Stephan, Feb 01 2004
From Petros Hadjicostas, Dec 03 2017: (Start)
We clarify the name of the sequence and provide a sketch of a proof of R. Stephan's statement above.
For n>=0, let b(n) = A064831(n+1). Then B(x) = Sum_{n>=0} b(n)*x^n = Sum_{n>=0} A064831(n+1)*x^n = 1/((1-x^2)*(1-3*x+x^2)) (see the formula section for sequence A064831). Define a(0) = 1, and (a(n): n>=1) = invEULER(b(n): n>=0), i.e., we give a new (more correct) definition of the current sequence. Using Bernstein and Sloane (1995), we define the sequence (d(n): n>=1) via Sum_{n>=1} (d(n)/n)*x^n = log B(x). Since EULER(a(n): n>=1) = (b(n): n>=0), we have a(n) = (1/n)*Sum_{s|n} mu(s)*d(n/s). Using the change of indexes m=n/s, we get A(x) = 1 + Sum_{n>=1} a(n)*x^n = 1 + Sum_{s>=1} (mu(s)/s)*Sum_{m>=1} (d(m)/m)*(x^s)^m = 1 + Sum_{s>=1} (mu(s)/s)*log B(x^s).
From the documentation of sequence A032170, we see that its g.f. is Sum_{s>=1} (mu(s)/s)*log C(x^s), where C(x) = (1-x)^2/(1-3*x+x^2). To prove R. Stephan's claim above, we need to prove that Sum_{s>=1} (mu(s)/s)*log C(x^s) - x - 2*x^2 = Sum_{s>=1} (mu(s)/s)*log B(x^s) - 3*x - 3*x^2. The last equality is equivalent to Sum_{s>=1} (mu(s)/s)*log(B(x^s)/C(x^s)) = 2*x + x^2, which in turn is equivalent to -Sum_{s>=1} (mu(s)/s) log((1-x^s)^2*(1-x^{2*s})) = 2*x + x^2. The last equality follows from the identity -Sum_{s>=1} (mu(s)/s)*log(1-y^s) = y, which follows from the Lambert series Sum_{s>=1} mu(s)*y^s/(1-y^s) = y.
(End)

Crossrefs

Programs

  • Mathematica
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    Join[{1}, EULERi[LinearRecurrence[{3, 0, -3, 1}, {3, 9, 24, 64}, 31]]] (* Jean-François Alcover, Aug 19 2018 *)

Formula

G.f.: 1 + Sum_{s>=1} (mu(s)/s)*log B(x^s), where B(x) = 1/((1-x^2) * (1-3*x+x^2)). - Petros Hadjicostas, Dec 03 2017
a(n) ~ ((1 + sqrt(5))/2)^(2*n) / n. - Vaclav Kotesovec, Aug 19 2018