A072339 Any number n can be written (in two ways, one with m even and one with m odd) in the form n = 2^k_1 - 2^k_2 + 2^k_3 - ... + 2^k_m where the signs alternate and k_1 > k_2 > k_3 > ... >k_m >= 0; sequence gives minimal value of m.
1, 1, 2, 1, 3, 2, 2, 1, 3, 3, 4, 2, 3, 2, 2, 1, 3, 3, 4, 3, 5, 4, 4, 2, 3, 3, 4, 2, 3, 2, 2, 1, 3, 3, 4, 3, 5, 4, 4, 3, 5, 5, 6, 4, 5, 4, 4, 2, 3, 3, 4, 3, 5, 4, 4, 2, 3, 3, 4, 2, 3, 2, 2, 1, 3, 3, 4, 3, 5, 4, 4, 3, 5, 5, 6, 4, 5, 4, 4, 3, 5, 5, 6, 5, 7, 6, 6, 4, 5, 5, 6, 4, 5, 4, 4, 2, 3, 3, 4, 3, 5, 4, 4, 3, 5
Offset: 1
Examples
a(6)=2 since 6=2^3-2^1 and 6 is not a power of two.
References
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1981, Vol. 2 (Second Edition), p. 196, (exercise 4.1. Nr. 27)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
(* computes a(n) for n = 1 to 2^m *) sumit[s_List] := Module[{i, ss=0}, Do[If[OddQ[i], ss+=s[[ -i]], ss-=s[[ -i]]], {i, Length[s]}]; ss]; m=8; powers= Rest@ Subsets[Table[2^i, {i, 0, m}]]; lst=Table[2m, {2^m}]; Do[t = powers[[i]]; lst[[sumit[t]]]=Min[lst[[sumit[t]]], Length[t]], {i, 2^(m+1)-1}]; lst
Formula
Conjecture: a(n)=1 if n=2^k, a(n)=a(2^k-i)+1 if 2^kJohn W. Layman, Jul 18 2002
Extensions
Extended and edited by John W. Layman and T. D. Noe, Jul 18 2002
Comments