A072373 Complexity of doubled cycle (regarding case n = 2 as a graph).
1, 4, 75, 384, 1805, 8100, 35287, 150528, 632025, 2620860, 10759331, 43804800, 177105253, 711809364, 2846259375, 11330543616, 44929049777, 177540878700, 699402223099, 2747583822720, 10766828545725, 42095796462852, 164244726238343, 639620518118400, 2486558615814025
Offset: 1
Links
- Stefano Spezia, Table of n, a(n) for n = 1..1700
- Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212.
- Index entries for linear recurrences with constant coefficients, signature (10,-35,52,-35,10,-1).
Crossrefs
Apart from a(2) coincides with A006235.
Programs
-
PARI
/* prism (or doubled cycle) graph with n vertices */ prism(n)=if(n%2,[;],matrix(n,n,i,j,i!=j && ((abs(i-j)==1 && (i+j)!=n+1) || (abs(i-j)==n/2-1 && (i+j)%n==n/2+1) || abs(i-j)==n/2)))
-
PARI
/* treenumber (or complexity) of a graph */ treenumber(m)=local(n); n=matdim(m); if(n,matdet(adj2laplace(m)+matone(n))/n^2)
-
PARI
/* convert adjacency matrix to laplacian matrix */ adj2laplace(m)=local(l,n); n=matdim(m); matdiagonal(m*vectorv(n,i,1))-m
-
PARI
/* matrix J of all ones */ matone(n)=matrix(n,n,i,j,1) /* dimension of a square matrix */ matdim(m)=matsize(m)[1]
-
PARI
a(n)=treenumber(prism(2*n))
-
PARI
a(n)=if(n<0,0,polcoeff(-8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2+x*O(x^n),n))
Formula
G.f.: -8*x^2+x*(1+2*x-10*x^2+2*x^3+x^4)/((1-x)*(1-4*x+x^2))^2.
a(n) = 10*a(n-1)-35*a(n-2)+52*a(n-3)-35*a(n-4)+10*a(n-5)-a(n-6), n>8.